

Technical Analysis Price outlook for Gujarat-ICS-104, 29mm and ICE cotton futures for the period 3rd May 2022 to 6th June 2022

Shri. Gnanasekar Thiagarajan is currently the head of Commtrendz Research, an organization which, specializes in commodity research and advisory to market participants in India and overseas. He works closely

with mostly Agri-Business, base metals and precious metals business corporates in India and across the globe helping them in managing their commodity and currency price risk. Further to his completing a post graduate in software engineering, he did a long stint with DowJones, promoters of "The Wall Street Journal" and had the opportunity of closely working with some of the legends in Technical Analysis history in the U.S.

Business Line have won accolades in

the international markets. He also writes a fortnightly column on a blog site for The Economic Times on Global commodities and Forex markets. He is a part an elite team

Domestic Markets

· Cotton prices have continued their oneway streak due to continued tightness and a relentless rally in ICE further adding to the bullish sentiment. The domestic cotton prices initially reached a high of 46,290 but met with good profit-taking to settle lower. International prices were supported by worsening drought of experts for moneycontrol.com in providing market insights. He was awarded "The Best Market Analyst", for the category- Commodity markets- Bullion, by then President of India, Mr. Pranab Mukherji.

He is a consultant and advisory board member for leading corporates and commodity exchanges in India and overseas. He is regularly invited by television channels including CNBC and ET NOW and Newswires like Reuters and Bloomberg, to opine on the commodity and forex markets. He has conducted training sessions for markets participants at BSE, NSE, MCX and IIM Bangalore and conducted many

internal workshops for corporates exposed to commodity price risk. He

has also done several training sessions for investors all over the country and is also a regular speaker at various conferences in India and abroad.

conditions. Taking cue from global prices, domestic cotton prices in India also surged. Thus, instead of softening, cotton prices increased immediately after the duty cut.

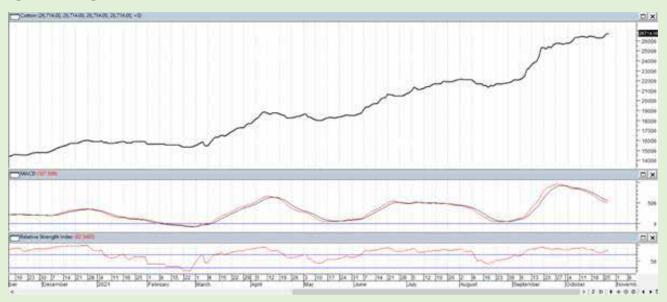
• The next 3-4 months may be difficult for the Indian textile sector due to limited availability of cotton in the country. In such a scenario, the

His columns in The Hindu Shri Gnanasekar Thiagarajan Director, Commtrendz Research

government may temporarily ban export of cotton if prices continue to rise. Upendra Prasad Singh, Secretary, Ministry of Textiles, has given indications for the same, but there is no timeline from the government.

• At present, cotton exports from India are decreasing sharply due to the price disparity. According to CAI, about 50 lakh bales i.e., about 15 percent of the total crop is left with the farmers. Of this, about 10 lakh bales can arrive in the current season. CAI has estimated total exports of 45 lakh bales in this season. Thus, negligible export of cotton is possible in the forthcoming months. So, there may not be a sharp downfall in cotton prices if export is banned.

International Markets


• ICE cotton futures fell more than 1% on Tuesday, as some investors locked in profits after a rally in the previous session. Futures rose near 3% in previous session, boosted by supply concerns and mill buying. Oil slipped by more than 1% as concerns about demand due to China's prolonged COVID lockdowns outweighed support from a possible European oil embargo on Russia over its actions in Ukraine.

• Beijing, reporting dozens of new cases daily, is mass-testing residents to avert a lockdown similar to Shanghai's over the past month. Covid-19 lockdowns and travel restrictions in major Chinese cities could weaken demand for commodities, helping offset the supply-chain snarls and dwindling inventories resulting from the Russian invasion. While prices for many commodities remain above pre pandemic levels, their retreat from records eases some immediate concerns about supply shocks adding to an inflationary spiral.

• Where from here? We can expect a great deal of volatility for the next couple of weeks as the market reacts to the news of the day. Plains of Texas received two to six inches of rain over the weekend. However, with the market weighing the positives of a large volume of on-call sales and unfavourable soil conditions in the southwest versus an inevitable decline in demand, there appears to be support at lower levels. However, market rallies cannot be sustained on supply issues alone and demand concerns will eventually weigh on prices.

Shankar 6 Guj ICS Price Trend

As mentioned in the previous update, more upside is likely to 26,500 at least in the near-term, with a possibility even to extend higher. Prices moved exactly in line with our expectations so far. But the up move is underway, without any major corrections that warn of equally sharp retracements if and when it happens. A potential target lies around 27,500-28,000 levels which is expected to strongly repulse upside attempts.

Since 1921, we are dedicated to the cause of Indian cotton.

Just one of the reasons, you should use our Laboratory Testing Services.

The Cotton Association of India (CAI) is respected as the chief trade body in the hierarchy of the Indian cotton economy. Since its origin in 1921, CAI's contribution has been unparalleled in the development of cotton across India.

The CAI is setting benchmarks across a wide spectrum of services targeting the entire cotton value chain. These range from research and development at the grass root level to education, providing an arbitration mechanism, maintaining Indian cotton grade standards, issuing Certificates of Origin to collecting and disseminating statistics and information. Moreover, CAI is an autonomous organization portraying professionalism and reliability in cotton testing.

The CAI's network of independent cotton testing & research laboratories are strategically spread across major cotton centres in India and are equipped with:

- State-of-the-art technology & world-class Premier and MAG cotton testing machines
- HVI test mode with trash% tested gravimetrically

LABORATORY LOCATIONS

Current locations : • Maharashtra : Mumbai; Yavatmal; Aurangabad; Jalgaon • Gujarat : Rajkot; Ahmedabad • Andhra Pradesh : Adoni • Madhya Pradesh : Khargone • Karnataka : Hubli • Punjab : Bathinda • Telangana: Warangal, Adilabad

COTTON ASSOCIATION OF INDIA

Cotton Exchange Building, 2nd Floor, Opposite Cotton Green Railway Station, Cotton Green (East), Mumbai - 400 033, Maharashtra, INDIA Tel.: +91 8657442944/45/46/47/48 • E-mail: cai@caionline.in • www.caionline.in

MCX May Contract Chart

The MCX benchmark cotton prices moved higher as expected. As mentioned earlier, charts continue to be bullish for 45,000 or even higher to 46,500 before any chances of a sustained correction. A push above 46350 would be a bullish sign, hinting at further advance towards 46,900 or even higher to 47,300 in a couple of weeks. However, an unexpected dip below 45,300 would warn about the possibility of prices declining to 43,800 where initial supports kick-in. Favoured view expects more upside initially followed by a strong correction to 43,500-800 and only a failure to hold here could result in a sharper decline subsequently.

ICE Cotton Futures

As mentioned earlier, most of our expectations on the upside have overshot and the chart's structure and indicators are bullish for a rise towards \$1.48 or even higher to \$1.53. We are at these levels presently and still looking for trend reversal signs that seems to be elusive. This makes us believe that we could edge higher more towards \$160-165 levels on the upside where strong resistance kick in. However, if external markers like the weather does not show any improvements, speculators could be taking aim at the all-time highs at \$2.11 reached in March 2011.

Conclusion:

The domestic prices are at peaks never seen before and corrections are quite shallow and unable to see any follow-through selling. But the entire markets are skewed on the long side, which could lead to terrible consequences as seen in the past. International cotton futures are showing bullish signs and it needs to be seen if markets are able to take the \$1.65 levels, which could be a strong resistance.

Both in 2011 and 2018 the on-call sales positions bloated like how we are at present and the end was not a happy one for the industry; which panicked and bought at high prices. Important support is at \$1.42

followed by \$1.38c on the downside and in that zone, prices could find a lot of buying interest again. The domestic prices have risen sharply higher and much higher relative to international prices, and perfectly in line with our expectations over the past several months now. The international price indicates that it is in the process of a further rise followed by a downward correction in the coming sessions.

For Guj ICS supports are seen at 25,500/qtl and for ICE May cotton futures at \$1.42 followed by \$1.35c. The domestic technical picture looks extremely overdone and one needs to be cautiously bullish, as prices are ruling at all-time highs. It could however grind higher. The international prices are relatively more bullish compared to the domestic prices presently. Though we have been expecting domestic prices to see a sharp retracement lower, it hasn't materialised yet. Therefore, we can expect sharp moves lower in domestic prices after making new highs and international prices to remain neutral to mildly bearish going forward.

US\$INR Monthly Report for May 2022

Shri. Anil Kumar Bhansali, Head of Treasury, Finrex Treasury Advisors LLP, has a rich experience of Banking and Foreign Exchange for the past 36 years. He was a Chief Dealer with an associate bank of SBI

We expect USDINR to remain volatile and trade in the wide range of 75.50-77.30 for May 2022. The major events to be in focus will be

FOMC policy outcome on 4th May and the LIC IPO which is set to open on 4th May and is likely to close on

9th May. Development regarding Russia-Ukraine wars crisis, FII flows and RBI stance to maintain stability in Rupee will also be on the radar. RBI has been selling dollars above 76.50 and despite DXY testing nearly 104 levels, almost a 20-yr high, USDINR is quite stable.

Following will be the key triggers for USDINR in the month of May:-

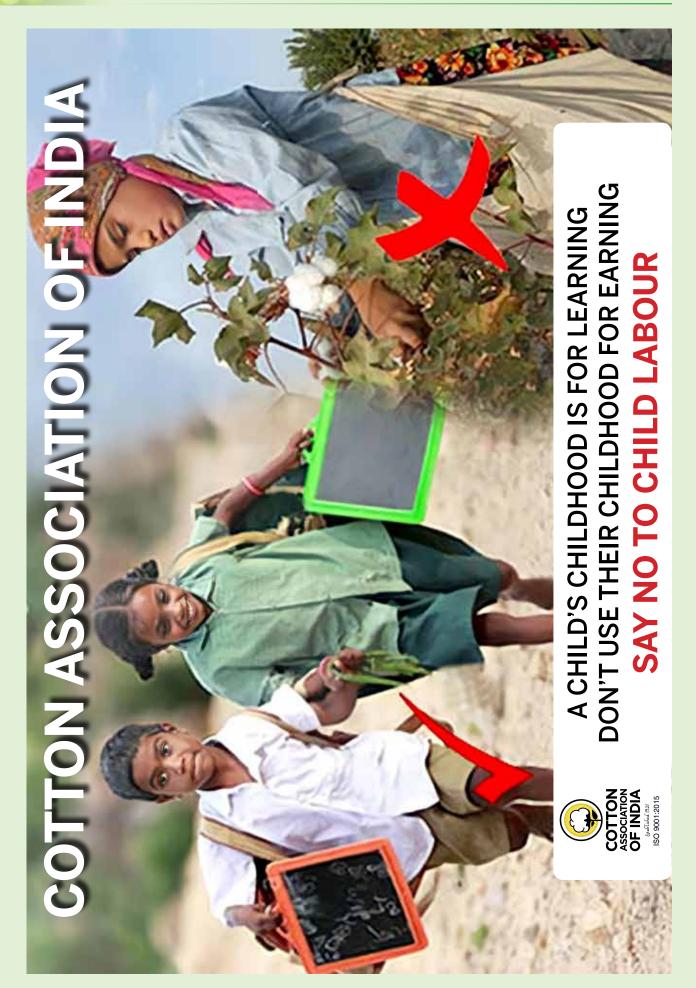
✓ FOMC Policy outcome on 4th May 2022: The US Federal Open Market Committee (FOMC) is scheduled to meet on 3rd-4th May 2022 and it is anticipated that the Fed could raise the interest rates by 50 bps in May meeting. However, the Fed's stance for further rate hikes in June and July will be in focus as current expectation is of again 50-bps in June as well as July.

✓ LIC IPO: The much-awaited LIC IPO is set to open on 4th May and is likely to close on 9th May. Price band has been set at Rs. 902 to Rs. 949, with a discount of Rs. 60 for policyholders and

Shri. Anil Kumar Bhansali

Rs. 45 for retail and employees. The government, which wholly owns the insurance behemoth, plans to raise an amount of Rs. 21,000 crore by selling around 22 crore shares which is equivalent to a 3.5 percent stake. This may lead downside in USDINR to some extent.

✓ Ukraine – Russia war crisis: Investors will remain sensitive to any news regarding Russia-Ukraine front and will react accordingly, thus effecting the market


Head of Treasury, Finrex Treasury Advisors LLP i Ultric integration due to any more sanctions by major

economies on Russian products and delay in talks progress will create volatility in market.

✓ Brent oil prices: Brent oil continued to remain above \$100/bl. Prices will take cues from concerns over supply tightness in the market, while demand worries from China on Shanghai lockdowns and as Beijing expands mass testing may limit gains. Any escalation in Russia-Ukraine may lead to further upside.

✓ FII sell off continues: Domestic markets continued to experience outflows for the seventh month in a row. From Oct 2021-Apr 2022 total outflows counts at \$24.338 bn. In CY 2022 from January to April total outflows stands at \$18.413 bn, with April witnessing FII's selling of \$2.961bn (as of 29th Apr 2022).

✓ RBI Forex strategy: In order to maintain the USDINR in the range, RBI bought US dollar to protect downside at around 75.50-75.30 and is also protecting upside at around 76.75-77.00.

												TINIT	RV CI	IPCOLINTRY SPOT RATES	ATEC										R\C	₹\ Ouintal)	(1
												INIO				D									×		<i>(</i> -
												¥	April 2022	022													
												20	2021-22 Crop	Crop													
Growth	P/H/R	P/H/R (SG)	GUJ	KAR	M/M(P)	P/H/ R(U) (SG)	M/M(P)/ SA/TL	P/H/ R(U)	M/M(P)/ SA/ TL/G	M/M(P)/ SA/TL	P/H/ R(U)	M/M(P)	SA/ TL/K	GUJ	R(L) 1	M/M(P)	SA/ TL/K	GUJ	M/M(P)	SA/TL/ K/O	r (q)M/M	SA/ TL/K/ TN/O	SA/ TL/K/ N TN/O	M/M(P)	K/TN M	M/M(P)	K/TN
Grade Standard	ICS-101	ICS-201	ICS-102	ICS-103	ICS-104	ICS-202	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105	ICS-105 I	ICS-105 1			ICS-107 I	ICS-107 IC	ICS-107 IC	ICS-107
Grade	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine
Staple	Below 22 mm	Below 22 mm	22 mm	23 mm	23 mm	27 mm	26 mm	27 mm	27 mm	27 mm	28 mm	28 mm	28 mm	28 mm	29 mm	29 mm	29 mm	29 mm	30 mm	30 mm	31 mm	31 mm	32 mm	34 mm 3	34 mm 3	35 mm 3	35 mm
Micronaire	5.0-7.0	5.0-7.0	_	4.0-5.5	4.5-7.0	3.5-4.9	3.0-3.4	3.5-4.9	3.0-3.4	3.5-4.9	3.5-4.9	3.7-4.5	3.7-4.5	ю			3.7-4.5	ß	10	ß	ю	ю	2	2		2	2.8-3.7
Gravimetric Trash Strenoth/GPT	4% 15	4.5% 15	13% 20	4.5% 21	4%	4.5% 26	4% 25	4% 26	4% 25	3.5% 26	4% 27	3.5% 27	3.5% 27	3% 27	3.5% 28	3.5% 28	3% 28	3% 28	3.5% 29	3% 29	3% 30	3% 30	33%	33 %	3.5% 34	4% 35 3	3.50% 35
1	15803	4	13919		21090	23846	20809	24127	21371	22355	ñ	24464	24521	ю	24183 2	25758 2	4	œ		10	\sim	27642 N		~		31635 33	33322
4	15860	16028	13919	14622	20809	23986	21034	24267	21596	22496	24886	24717	24774	24886 2	24408 2	26011 2	26067 2	25589 2	26855 2	26995 2	27698 27	27782 N		30369 31	31494 31	31775 32	32900
5	16028	16225	13919	14763	20809	24267	21174	24549	21737	22496	25167	24858	24914	25027 2	24633 2	26152 2	26208 2	25730 2	26995 2	27136 2	27698 27	27782 N	N.A. 3(30369 31	31494 31	31775 32	32900
6	16085	16281	13638	14763	20809	24436	21315	24689	21737	22496	25252	24999	25055	25111 2	24633 2	26152 2	26208 2	25730 2	26995 2	27136 2	27698 27	27782 N	N.A. 3(30369 31	31494 31	31775 32	32900
7	16085	16281	13357	14763	20809	24436	21315	24689	21737	22496	25252	25055	25111	25167 2	24633 2	26152 2	26208 2	25730 2	26995 2	27136 2	27698 27	27782 N	N.A. 3(30369 31	31494 31	31775 32	32900
8	16085	16281	13216	14679	20809	24436	21231	24689	21652	22383	25252	25055	25111	25167 2	24577 2	26067 2	26123 2	25673 2	26911 2	27051 2	27642 27	27726 N	N.A. 3(30369 31	31494 31	31775 32	32900
6	16085	16281	13216	14679	20809	24436	21231	24689	21652	22383	25252	25111	25167	25252 2	24633 2	26067 2	26123 2	25730 2	26911 2	27051 2	27642 27	27726 N	N.A. 3(30651 31	31775 32	32057 33	33041
11	16085	16281	13216	14679	20809	24436	21231	24689	21652	22383	25252	25111	25167	25252 2	24633 2	26067 2	26123 2	25730 2	26911 2	27051 2	27642 27	27726 N	N.A. 3(30651 31	31775 32	32057 33	33041
12	16169	16366	13076	14763	20809	24521	21231	24774	21737	22468	25336	25195	25252	25336 2	24717 2	26152 2	26208 2	25814 2	26995 2	27136 2	27698 27	27782 N	N.A. 30	30651 31	31775 32	32057 33	33041
13	16253	16450	13076	14763	20809	24746	21455	24999	21962	22693	25561	25420	25477	25561 2	24942 2	26376 2	26433 2	26039 2	27220 2	27361 2	27923 28	28007 N	N.A. 3(30791 31	31916 32	32197 33	33181
14	16394	16591	13076	14763	20809	25027	21737	25280	22243	22974	25842	25702	25758	25842 2	25224 2	26658 2	26714 2	26320 2	27501 2	27642 2	28204 28	28289 N	N.A. 3(30932 32	32057 32	32338 33	33322
15	16450	16647		14819	20809	25167	21793	25420	22299	23030	25983	25758	25814	25898 2	25280 2	26714 2	26770 2	26320 2	27558 2	27698 2		28345 N	N.A. 3(32057 32	32338 33	33322
16	16591	16788	13357	14960	20949	25308	21877	25561	22383	23115	26123	25842	25898	25983 2	25420 2	26798 2	26855 2		27642 2	27782 2	28261 28	28345 N	N.A. 3(30932 32	32057 32	32338 33	33322
18	16872	17069	13638	15185	21090	25477	22018	25758	22496	23311	26292	26123	26180	26152 2	25870 2	26995 2	27051 2	26433 2	27811 2	27951 2	28401 28	28485 N	N.A. 31	31072 32	32197 32	32478 33	33463
19	16872	17069	13976	15185	21090	25477	22018	25758	22496	23311	26292	26123	26180	26152 2	25870 2	26995 2	27051 2	26433 2	27811 2	27951 2	28401 28	28485 N	N.A. 31	31072 32	32197 32	32478 33	33463
20	16703	16900	14060		21090	25308	21849	25533	22355	23115	26067	26011	26067	26039 2	25589 2	26855 2	26911 2	26348 2	27558 2	27698 2		28204 N	N.A. 3(30932 32	32057 32	32338 33	33322
21	16703	16900	14060	15185	21090	25392	21849	25645	22355	23199	26152	26152	26208	26152 2	25673 2		27023 2	26489 2	27642 2	27782 2			N.A. 3(32057 32	32338 33	33322
22	16703	16900	13919	15185	21090	25308	21793	25561	22355	23199	26039	26011	26067	26067 2	25589 2	26855 2	26911 2	26433 2	27558 2	27698 2	28120 28		N.A. 3(30932 32	32057 32	32338 33	33322
23	16591	16788	13779	15044	20949	25167	21652	25449	22215	23058	25870	25870	25927	26011 2	25505 2	26714 2	26770 2		27473 2	27614 2	27839 27	27923 N	N.A. 3(30791 31	31916 32	32197 33	33181
25	16366	16563	13779	15747	21652	24774	21371	25055	21934	22918	25477	25730	25786	25730 2	25308 2	26573 2	26630 2	26292 2	27417 2	27558 2	27839 27	27923 N	N.A. 3(30651 31	31775 32	32057 33	33041
26	16085	16281	13779	16310	22215	24774	21371	25055	21934	22918	25477	25730	25786	25730 2	25027 2	26573 2	26630 2	26292 2	27417 2	27558 2	27839 27	27923 N	N.A. 3(30651 31	31775 32	32057 33	33041
27	16366	16563	13779	16310	22215	24914	21371	25195	21934	22918	25617	25730	25786	25730 2	25167 2	26573 2	26630 2	26292 2	27417 2	27558 2	27839 27	27923 N	N.A. 30	30651 31	31775 32	32057 33	33041
28	17491	17687	14060	16591	22496	25195	21371	25477	21934	23058	26180	25870	25927	25870 2	25308 2	26714 2	26770 2	26433 2	27558 2	27698 2	27979 28	28120 N	I.A. 3(30651 31	31775 32	32057 33	33041
29	18194	18390	14341	16872	22777	25505	21512	25786	22074	23340	26517	26152	26208	26152 2	25589 2	26995 2	27051 2	26714 2	27839 2	27979 2	28401 28	28542 N	N.A. 3(30651 31	31775 32	32057 33	33041
30	18194	18390	14341	16872	22777	25505	21371	25786	21934	23340	26517	26152	26208	26152 2	25589 2	26995 2	27051 2	26714 2	27839 2	27979 2	28401 28	28542 N	N.A. 3(30651 31	31775 32	32057 33	33041
Н	18194	18390	14341	16872	22777	25505	22018	25786	22496	23340	26517	26152	26208	26152 2	25870 2	26995 2	27051 2	26714 2	27839 2	27979 2	28401 28	28542	- 31	31072 32	32197 32	32478 33	33463
L	15803	15944	13076	14622	20809	23846	20809	24127	21371	22355	24746	24464	24521	24605 2	24183 2	25758 2	25814 2	25308 2	26714 2	26855 2'	27558 27	27642	- 3(30229 31	31494 31	31635 32	32900
А	16525	16718	13668	15279	21259	24874	21479	25139		22858	25696	25558	25614	25641 2	25120 2	26517 2	26573 2	26137 2	27342 2	27482 2	27957 28	28048	- 3(30690 31	31837 32	32096 33	33136
								Η	= High	hest	$\mathbf{L} = \mathbf{L}$	L = Lowest	A = A	Average N.A.	N.A.	= Not Available	Availa	ible									

					UPCOUI	NTRY SP	OT RAT	ſES				(R	Rs./Qtl)
		netres bas	sed on		ic Grade & Half Mean (4)]			Sp	oot Rate	· I	ntry) 20 1 2022	21-22 Cı	ор
Sr. No	Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength /GPT	25th	26th	27th	28th	29th	30th
1	P/H/R	ICS-101	Fine	Below 22mm	5.0 - 7.0	4%	15	16366 (58200)	16085 (57200)	16366 (58200)	17491 (62200)	18194 (64700)	18194 (64700)
2	P/H/R (SG)	ICS-201	Fine	Below 22mm	5.0 - 7.0	4.5%	15	16563 (58900)	16281 (57900)	16563 (58900)	17687 (62900)	18390 (65400)	18390 (65400)
3	GUJ	ICS-102	Fine	22mm	4.0 - 6.0	13%	20	13779 (49000)	13779 (49000)	13779 (49000)	14060 (50000)	14341 (51000)	14341 (51000)
4	KAR	ICS-103	Fine	23mm	4.0 - 5.5	4.5%	21	15747 (56000)	16310 (58000)	16310 (58000)	16591 (59000)	16872 (60000)	16872 (60000)
5	M/M (P)	ICS-104	Fine		4.5 - 7.0	4%	22	21652 (77000)	22215 (79000)	22215 (79000)	22496 (80000)	22777 (81000)	22777 (81000)
6	P/H/R (U) (SG)				3.5 - 4.9	4.5%	26	24774 (88100)	24774 (88100)	24914 (88600)	25195 (89600)	25505 (90700)	25505 (90700)
7	M/M(P)/ SA/TL	ICS-105	Fine		3.0 - 3.4	4%	25	21371 (76000)	21371 (76000)	21371 (76000)	21371 (76000)	21512 (76500)	21371 (76000)
	P/H/R(U)	ICS-105	Fine		3.5 - 4.9	4%	26	25055 (89100) 21024	25055 (89100) 21024	25195 (89600) 21024	25477 (90600) 21024	25786 (91700) 22074	25786 (91700) 21024
	M/M(P)/ SA/TL/G	ICS-105 ICS-105	Fine		3.0 - 3.4	4%	25	21934 (78000) 22918	21934 (78000) 22918	21934 (78000) 22918	21934 (78000) 23058	22074 (78500) 23340	21934 (78000) 23340
	M/M(P)/ SA/TL P/H/R(U)	ICS-105	Fine Fine		3.5 - 4.9 3.5 - 4.9	3.5%	20	(81500) 25477	(81500) 25477	(81500) 25617	(82000) 26180	(83000) 26517	(83000) 26517
	M/M(P)	ICS-105	Fine		3.7 - 4.5	3.5%	27	(90600) 25730	(90600) 25730	(91100) 25730	(93100) 25870	(94300) 26152	(94300) 26152
	SA/TL/K	ICS-105	Fine		3.7 - 4.5	3.5%	27	(91500) 25786	(91500) 25786	(91500) 25786	(92000) 25927	(93000) 26208	(93000) 26208
	GUI	ICS-105	Fine		3.7 - 4.5	3%	27	(91700) 25730	(91700) 25730	(91700) 25730	(92200) 25870	(93200) 26152	(93200) 26152
15	R(L)	ICS-105	Fine	29mm	3.7 - 4.5	3.5%	28	(91500) 25308	(91500) 25027	(91500) 25167	(92000) 25308	(93000) 25589	(93000) 25589
16	M/M(P)	ICS-105	Fine	29mm	3.7 - 4.5	3.5%	28	(90000) 26573	(89000) 26573	(89500) 26573	(90000) 26714	(91000) 26995	(91000) 26995
17	SA/TL/K	ICS-105	Fine	29mm	3.7 - 4.5	3%	28	(94500) 26630	(94500) 26630	(94500) 26630	(95000) 26770	(96000) 27051	(96000) 27051
18	GUJ	ICS-105	Fine	29mm	3.7 - 4.5	3%	28	(94700) 26292	(94700) 26292	26292	26433	(96200) 26714	26714
19	M/M(P)	ICS-105	Fine	30mm	3.7 - 4.5	3.5%	29	(93500) 27417 (07500)	27417	(93500) 27417 (97500)	27558	(95000) 27839	27839
20	SA/TL/K/O	ICS-105	Fine	30mm	3.7 - 4.5	3%	29	(97500) 27558 (98000)	(97500) 27558 (98000)	(97500) 27558 (98000)	(98000) 27698 (98500)	(99000) 27979 (99500)	27979
21	M/M(P)	ICS-105	Fine	31mm	3.7 - 4.5	3%	30	27839 (99000)	(98000) 27839 (99000)	(98000) 27839 (99000)	27979	(99500) 28401 (101000)	28401
22	SA/TL/ K / TN/O	ICS-105	Fine	31mm	3.7 - 4.5	3%	30	27923 (99300)	27923 (99300)	27923	28120 (100000)	28542	28542
	SA/TL/K/ TN/O	ICS-106	Fine	32mm	3.5 - 4.2	3%	31	N.A. (N.A.)	())) N.A. (N.A.)	())) N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)
	M/M(P)	ICS-107	Fine	34mm	2.8 - 3.7	4%	33	30651 (109000)	30651	30651	30651	30651	30651
25	K/TN	ICS-107	Fine	34mm	2.8 - 3.7	3.5%	34	31775 (113000)	31775	31775	31775	31775	31775
26	M/M(P)	ICS-107	Fine	35mm	2.8 - 3.7	4%	35	32057 (114000)	32057	32057	32057	32057	32057
27	K/TN	ICS-107	Fine	35mm	2.8 - 3.7	3.5%	35	33041 (117500)	33041 (117500)	33041 (117500)	33041 (117500)	33041 (117500)	33041 (117500)

(Note: Figures in bracket indicate prices in Rs./Candy)