

Technical Analysis Price outlook for Gujarat-ICS-105, 29mm and ICE cotton futures for the period 01/09/15 to 14/09/15

(The author is Director of Commtrendz Research and the views expressed in this column are his own and the author is not liable for any loss or damage, including without limitations, any profit or loss which may arise directly or indirectly from the use of above information.)

We will look into the Gujarat-ICS-105, 29mm prices along with other benchmarks and try to forecast price moves going forward.

As mentioned in the previous update, fundamental analysis involves studying and

analysing various reports, data and based on that arriving at some possible direction for prices in the coming months or quarters.

Some of the recent fundamental drivers for the domestic cotton prices are:

• Cotton futures are higher despite international prices coming under pressure. The delay in monsoons has affected the sentiments of cotton growing farmers in many parts of India. Moisture stress is occurring in most of the cotton

belts due to delayed second spell of Southwest monsoon. The delay in monsoon has led to farmers shifting to other cash crops in many cotton growing areas of India.

• The Cotton Association of India (CAI) expects the 2014-15 cotton production to be surplus than the domestic requirement. With huge carrying stock with the Cotton Corporation of India (CCI), CAI

has said that apprehensions of major support price operation at the beginning of the next cotton season looms large.

• The top destination for Indian cotton, China, continues to remain inactive in importing the commodity, and exports are not expected to see a significant growth in the current year. But, if China ups its imports to meet quality requirements, things could change favourably for cotton futures. As per recent data, China's cotton imports for July was down 62 per cent compared to last year at 105,700 tonnes.

• CAI has warned that India needs to learn a lesson from the mistakes that China made and dispose of the cotton lying with CCI quickly, to avoid getting into a China-like situation.

Some of the fundamental drivers for International cotton prices are:

• Cotton Benchmark futures in New York were lower on Monday as speculative buying dried up after a sharp drop in the past week. Support from sharp rallies in equities and other commodity markets helped prices recover from recent lows.

• The International Cotton Advisory Committee (ICAC) on Monday raised its forecast for world inventories for the 2015/16 crop year as demand is expected to fall.

• Speculators boosted their cotton net long by 2,395 lots for a total bullish bet of 44,382 lots, the largest since the week ending July 21, as prices hit a six-week high.

Shri Gnanasekar Thiagarajan

Let us now dwell on some technical factors that influence price movements.

mentioned earlier, As we expected a consolidation in the 9000-10,000/qtl range before the next move up targeting resistance at 10,645/qtl in the coming sessions. No change in this view. Supports are now seen at 9,400-500 /qtl levels followed by 9,100-300 / qtl levels. Ideally, these supports are expected to hold for a push higher towards 9800-10,000/ qtl, in the coming sessions. Any unexpected fall below 9,100/qtl could warn of the picture changing to bearish again. Such a fall could take prices lower to 9,000/qtl levels again or even lower.

No change in view. The trend and momentum indicators are still indicating weakness in the bigger picture, and weakness is also seen in the short-term, which could initially see prices moving lower to 9,100-200/qtl levels before moving higher again towards 10,000-10,200 /qtl. Indicators are displaying neutral to bullish tendencies, which could see prices consolidating in a broad range before attempting to move higher again. Prices could consolidate in the 9,400-500 to 9,800-900/qtl levels lower in the coming session before rising higher in the coming months. Only a decline below 9,100 / qtl could cause doubts on our bullish view.

We will also look at the ICE Cotton futures charts for possible direction in international prices.

As mentioned in the previous update, while supports near 62-63c continues to hold, the upward

momentum is expected to persist and possibly rise towards the next important resistance at 72-73c. However, the 67c resistance has been quite strong, and while this level caps, we can expect prices to gradually edge lower. As mentioned earlier, this is a significant resistance to surpass in the near-term. Only an unexpected decline below 61c could warn that the bullish picture has been negated and a strong decline could begin again. Such a fall could take prices lower towards 58-60c levels being the next important support followed by 55c. Favoured view expects prices to move lower towards 61-65c levels and then decline from there.

CONCLUSION:

As cautioned earlier, a sharp decline in international prices is in the offing and the domestic prices could follow suit soon. The domestic prices are showing an inclination to rise higher in the short-term but the same trend is not visible in the international prices. So, the present uptrend in the domestic prices is unlikely to last and could be short-lived. For Guj ICS supports are seen at 9,500-600 /qtl and for ICE Oct cotton futures at 62c followed by 60.25c. Only an unexpected rise above 9,900 /qtl could change the picture to neutral in the domestic markets. The international markets are indicating a weaker trend now, and the overall trend is still weak and therefore, it needs to surpass key resistance levels for the trend to turn strong again, which is not our favoured view.

ENT

Email cotton@indiancommodities.com

REL EVANT IEWS

INFOL

just agri.com

We have a wide network of correspondents all over, working towards bridging the gap between you and the market. These correspondents are experts in the field of cotton and report live from the mandi. They assist us in keeping you updated on what exactly is happening in the market. So that the market incidents are never too far from you!

Call 022-4009-5023 / 24 / 82

VALUABLE INTERVIEWS

JustAgri has achieved the status of being the primary source of information for the cotton industry in a short period of time. Our interview section has almost all the answers you are looking for. Sometimes information that is not available anywhere else is found from direct interviews and staying in touch with the right people.

Package	Cost Per Year + Service Tax	Total
Cotton Email	9000 /- + 12.36	10112.40
Cotton SMS	4500 /- + 12.36	5056.20
Yarn Email	3804 /- + 12.36	4274.18
Yarn SMS	1500 /- + 12.36	1685.40
Pulses SMS	2500 /- + 12.36	2809.00
Oilseeds SMS	2500 /- + 12.36	2809.00
PDF REPORTS	STATISTICS SMS ALERTS	24Hr SUPPORT
E COTTON TRADING DESK	QUALITY CERTIFICATION WAREHOUS	ING COLLATERAL MANAGEM

SUPPORT PRICES

Minimum Support Prices for Kapas of Fair Average Quality for the Cotton Season 2015-2016

(In Rs. per quintal)

		Fibre Qualit	y Parameters	Minimum	
Sr. No.	Classes of Cotton	Basic Staple Length (2.5% Span Length) in MM	Micronaire Value	Support Prices (MSP) for 2015-16	Names of the Indicative Varieties used by the Trade
(i)	(ii)	(iii)	(iv)	(v)	(vi)
	Short Staple (20	mm & below)			
1		-	7.0-8.0	3300	Assam Comilla
2		-	6.8-7.2	3300	Bengal Deshi
	Medium Staple	(20.5 mm - 24.5 m	ım)		
3		21.5 - 22.5	4.8 - 5.8	3550	Jayadhar
4		21.5 - 23.5	4.2 - 6.0	3600	V-797 / G. Cot.13 / G. Cot.21
5		23.5 - 24.5	3.4 - 5.5	3650	AK/Y-1 (Mah & M.P.) / MCU-7 (TN)/SVPR-2 (TN)/PCO-2 (AP & Kar.) / K-11 (TN)
	Medium Long S	Staple (25.0 mm - 1	27.0 mm)		
6		24.5 - 25.5	4.3 - 5.1	3800	J-34 (Raj.)
7		26.0 - 26.5	3.4 - 4.9	3900	LRA-5166/KC-2 (TN)
8		26.5 - 27.0	3.8 - 4.8	3950	F-414/H-777/J-34 Hybrid
	Long Staple (27.	5 mm - 32.0 mm)			
9		27.5 - 28.5	4.0 - 4.8	4000	F-414/H-777/J-34 Hybrid
10		27.5 - 28.5	3.5 - 4.7	4000	H-4/H-6/MECH/RCH-2
11		27.5 - 29.0	3.6 - 4.8	4050	Shankar-6/10
12		29.5 - 30.5	3.5 - 4.3	4100	Bunny/Brahma
	Extra Long Stap	le (32.5 mm & abo	ove)		
13		32.5 - 33.5	3.2 - 4.3	4300	MCU-5/Surabhi
14		34.0 - 36.0	3.0 - 3.5	4500	DCH-32
15		37.0 - 39.0	3.2 - 3.6	5300	Suvin

(i) If the micronaire value is in the range of 3.8 to 4.2 for Staple Length of 24.5 - 25.5 mm mentioned at Sr. No.6 of above table, a premium of Rs. 30/- per quintal will be given over and above the MSP. If the micronaire happens to be less than 3.8 or more than 5.1, the MSP will be lower by Rs. 15/- per quintal for every 0.2 micronaire.

(ii) If the micronaire values are outside the range in the column (iv) for staple lengths at Sr. No.9 to 15 of above table, a lowe MSP of Rs. 25/- per quintal will be given for every 0.2 micronaire value.

(iii) The Minimum acceptable micronaire value shall be 2.8 for Extra Long Staple Cotton mentioned at Sr. No. 13 to 15 of above table. Minimum acceptable micronaire value shall be 3.0 for other varieties of cotton at Sr. No.1 to 12 of the above table.

(iv) The names of varieties mentioned in colum No. (vi) of the aforesaid table are only indicative related to the respective length group.

(v) The base line moisture content of kapas shall be 8%. The farmer selling cotton having moisture above 8% but upto 12% will get lesser price proportionately, while it will be a proportionate incentive, if the moisture content of the produce is less than 8%. For the purpose of undertaking price support operation by the designated Procurement Agencies, moisture content of more than 12% is not permitted. The incentive / disincentive will be made on the basis of rate per quintal of kapas on pro-rata basis.

(vi) The procurement agencies should ensure that micronaire and other fibre quality parameters are scientifically assessed by providing the required infrastructure / facilities at the purchase centres.

CCI and NAFED would coninue to be the Nodal Agency for procurement of seedcotton (Kapas)

Source : Office of the Textile Commissioner

Optimized Nitrogen Use in Cotton Production

(Continued from Issue No.20)

High or Low Nitrogen

Nitrogen is most often taken up by plants in the form of water-soluble nitrate, ammonium and, to a lesser extent, as proteins, peptides or amino acids (Näsholm et al., 2009). Plants are capable of sensing the nitrogen content in the soil in all its forms. According to Näsholm and his team, in spite of the above ability of plants to use a wide range of nitrogen forms, research on plant nutrition has had a strong focus on inorganic forms of nitrogen. This

focus was motivated by the prominent role of inorganic nitrogen in many arable soils and the dependence of many crop plants on this nitrogen source. Of course, it was also motivated by the abundance of inorganic nitrogen fertilizers for agricultural use. The plant cannot utilize all the nitrogen made available in the root zone. Some loss of nitrogen occurs under all circumstances. Major sources of nitrogen losses are

denitrification, volatilization, and/or leaching. In cotton, losses can be as high as half the amount

Quantity of Nitrogen Applied to Cotton in Some Countries

applied. Nitrogen losses can be minimized by making the right decisions regarding the form of nitrogen to be applied, the environmental conditions at the time of application (soil and weather) and application management (how great a quantity is applied and at what stage). Enhanced-efficiency fertilizers might potentially reduce nitrogen loss, but again, subject to many factors that have been extensively discussed in the literature and regularly practiced around the world. Applications of lower doses of nitrogen can not only deprive the plant of the necessary

ICAC

only deprive the plant of the necessary amount, but also affect the utilization of other nutrient elements. Furthermore, the under-supply of the nitrogen element to cotton cannot be compensated for by other means. Higher doses of nitrogen can even be deleterious, but there are ways and means to avoid consequences and, in fact, utilize nitrogen to produce a positive impact on yields. Higher doses, as in China and in many other countries that apply

close to 200 kg/ha of nitrogen, are channeled toward

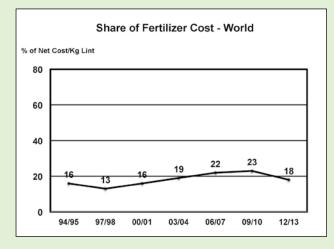
Country	Kg/ha of N	Time of A	Application					
		Before Sowing %	Pre-flowering %					
Australia	200	69	29					
Brazil, Cerrado	180	50	50					
Burkina Faso	44		100					
Cameroon	44		91					
China, Yellow & Yangtze	& Yangtze 300 Small doses before planting and rest split between pre fl and 50% boll formation.							
Colombia, Cordova	115	10	80					
Cote d'Ivoire	53		80					
Egypt	144	50	50					
Greece	110	Split between before sowing and pre flowering.						
India, North	150	Before sowing, pre flowering and 50% boll formation.						
Iran, Khorasan	200	Equally split between before planting and pre flowering.						
Kazakhstan	180	40	40					
Mali	50		100					
Myanmar	124	100						
Pakistan, Punjab	220	Before sowing, pre flowering and	50% boll formation					
Spain	120	74						
Sudan	86	20	80					
Тодо								
Turkey, Southeastern Anatolia	160	Almost equally split between before sowing and pre flowering.						
USA	75-180	Popular recommendation is 1/3 square formation.	before sowing and 2/3 at peak					
Uzbekistan	200	Split doses.						
Zimbabwe	50	Before sowing, pre flowering and	50% boll formation.					

Notes:

1. P and K are also applied in many countries in addition to N.

2. Before sowing also includes application at the time of planting.

3. Variations do exist among regions and farmers depending upon so many factors.


4. Data is for 2013/14, year to year variations do exist.

5. Balance is applied at various other stages depending on crop condition.

a positive impact by using short-stature, earlymaturing varieties that go into their reproductive phase at an early stage, adjusting the timing of fertilizer application, pruning the tops of the plants, and applying growth regulators or retardants, which is the most popular expedient.

Cost of Fertilizers Applied to Cotton

According to the ICAC surveys on the cost of production of raw cotton, 15 cents were spent on fertilizers and their application to produce a kilogram of lint in 1994/95 and 1997/98. By 2012/13, the amount had increased to 27 cents for every kilogram of lint produced. ICAC has not analyzed just how much of this increase is due to higher doses of nitrogen and how much is due to higher fertilizer prices, and for which specific nutrient. However, in terms of the share that fertilizer costs comprise of the total outlay for inputs and operations, the share of fertilizers increased from 2000/01 reaching a peak in 2009/10. The three-year survey showed that the cost of the fertilizers needed to produce a kilogram of lint declined by over 20% in 2012/13. The price of fertilizers may continue rising but the amount of nitrogen applied to grow cotton seems to have reached its peak. No further increases in nitrogen fertilizer use are expected because additional doses are not having a positive impact on yields.

Nitrogen Use Efficiency

Much of the recent research in nitrogen deals with improving the efficiency of fertilizer use. Nitrogen use efficiency may be considered in a much broader context that encompasses any approach that can make better use of the nitrogen in the plant's environment, whether the plant takes it up in advance and stores it for use at a later time or uses soil bacteria to induce symbiosis. But, these are the approaches that have traditionally been employed for a long time, not only in cotton but also on all

other crops. In the last fifty years, the amount of synthetic nitrogen applied to crops has increased by leaps and bounds, resulting in multi-fold increases in yields, but with a considerable impact on the environment throughout the world. The rising costs and quantities of nitrogen applications have compelled the cotton community to look for crops that are better able to take up, utilize and remobilize the nitrogen available to them. Here, nitrogen use efficiency means identifying nonconventional means for enhanced use of available nitrogen and producing higher yields with lower doses of nitrogen. Enhanced efficiency uses additives or coatings to promote nitrogen use efficiency by changing the release of nitrogen from the fertilizer source or by modifying the soil-fertilizer reaction. Blaylock (2012), reviewing the mechanism of enhanced efficiency nitrogen fertilizers underscored the use of urease inhibitors, nitrification inhibitors and controlled- and slowrelease processes.

Urease inhibition is used to minimize the process of volatilization. Urease inhibitors delay urea hydrolysis, thereby providing time for incorporation by tillage or for application of water so that the fertilizer can dissolve into the soil. Ammonia has been reported to delay volatilization for as much as ten days after application, so rainfed cotton might also benefit. In the soil, ammonia combines with water and is converted into ammonium, thus limiting ammonia volatilization. Urease inhibitors are available on a commercial scale, but their effects on yield and economics have not been thoroughly authenticated. Kruse and Sequeira (2014) evaluated the yield response of Upland and Pima varieties to urea-ammonium nitrate (liquid, 32% nitrogen), with or without stabilizers. Nitrogen was applied at rates of either 84 or 168 kg per hectare by surface broadcasting. Trials showed that the addition of a urease inhibitor or a combination of urease and nitrification inhibitors resulted in increased lint yield or fertilizer recovery in cases where nitrogen was a limiting factor and the potential for nitrogen fertilizer loss existed. In trials in which nitrogen was not a limiting factor or where volatilization was not a major concern, the use of a stabilizer usually did not result in a yield benefit. The data from these experiments indicate that there is a potential agronomic and economic benefit to producers when they adopt stabilizer technology in their fertilizer when it is applied on the surface of the soil.

Nitrification inhibitors retard the conversion of ammonia to nitrate by interfering with the nitrifying material. Nitrate is mobile in soil, so it can escape the nitrification process. However, leaching has to be avoided so that the nitrate form of nitrogen does not spread beyond the root zone, where it can turn into greenhouse gasses such as nitrous oxide and nitric oxide. The third approach slows or controls the release of nitrogen after it has been applied in the field. The mechanism seems to be more promising but clear-cut benefits have not yet been proved in yield potential or at various nitrogen application levels. Premature losses must be reduced while increasing the effectiveness of urease and nitrification inhibitors. Slow-release products are expensive and may not result in proportional economic benefits. The economic benefits of efficiency-enhancement technologies and/or products may not reside in yield gains as much as in their impact on the environment.

Genetic engineering of the cotton plant may be used to enhance its nitrogen use efficiency and avoid the negative environmental impacts of excessive doses of nitrogen while inverting the diminishing returns arising from nitrogen fertilization. This technology could help plants maintain their yields with lower applications of nitrogen. Currently, it is being employed in corn, wheat and sorghum with reported yield increases of as much as 15%. Progress has been made toward the implementation of this technology in cotton production, but its implementation on a commercial scale would not seem to be nearing full feasibility within the next few years. While awaiting the practical materialization of genetic concepts rooted in biotechnology, other options have to be pursued to improve nitrogen use efficiency.

Conclusion

The fertilizer outlook for 2015, in general, is not promising. Corn is the top user of nitrogen in agriculture and the corn area is expected to shift to soybeans in countries where such an option is available, thus reducing the demand for nitrogen fertilizer. The diminishing economic returns from cotton, for whatever number of reasons, will force farmers to peg their hopes on extracting available potash and phosphorus from the soil. The shrinking demand for nitrogen and other macronutrients will impact prices, but perhaps not enough to convince growers to apply higher doses of nitrogen. The reason for the lack of interest would reside in the unconfirmed impact on yields. There is a need to control nitrogen use. Ways and means must be found to minimize the quantities of nitrogen applied to cotton by exploiting genetic mechanisms that may enable the plant to make better use of available nitrogen. The quantity of nitrogen applied to cotton is no longer a yield-inhibiting factor. Recommendations are generally followed in most countries if farmers have access to fertilizers. Nitrogen use on cotton has been optimized in terms of quantity. Thus, additional doses of nitrogen might unbalance the reproduction/ vegetative growth ratio and have a negative effect on quality. Surface application of nitrogen must be reduced in order to minimize losses. Measures to increase nitrogen use efficiency must be identified, whether by genetic, agronomic or physical means capable of improving nitrogen uptake, mobility and utilization by the cotton plant. Farmers may be expected to be conservative in nitrogen use and prefer to reduce usage by simply using slow release nitrogenous compounds.

References

Bednarz, Craig W. and Robert L. Nicholsb. 2005. Phenological and morphological components of cotton crop maturity. Crop Sci., 23-1497-1503.

Blaylock, Alan D. 2012. Understanding enhanced efficiency nitrogen fertilizers. Proceedings of the Beltwide Cotton Conferences, National Cotton Council of America, Memphis, TN, USA.

Burke, James M., Derrick M. Oosterhuis and Tyson B. Raper. 2013. The response of cotton Gossypium hirsutum l. to slow release foliar fertilizer. Proceedings of the Beltwide Cotton Conferences, National Cotton Council of America, Memphis, TN, USA.

Kruse, John S. and Cleiton Sequiera. 2014. Evaluation of nitrogen management in cotton production with Agrotain® nitrogen stabilizer. Proceedings of the Beltwide Cotton Conferences, National Cotton Council of America, Memphis, TN, USA.

McAllister, Chandra H., Perrin H. Beatty and Allen G. Good. 2012. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnology Journal, Volume 10, Issue 9, 1011–1025, December 2012. Also available at http://onlinelibrary.wiley.com/doi/10.1111/ j.1467-7652.2012.00700.x/full.

Näsholm, T., Kielland, K. and Ganeteg, U. .2009. Uptake of organic nitrogen by plants. New Phytol. 182, 31–48.http://onlinelibrary. wiley.com/doi/10.1111/ j.1469-8137.2008.02751.x/full.

Technical Information Section. 2014. Cotton Production Practices - November 2014, International Cotton Advisory Committee, Washington DC, USA.

Wells, R. and Meredith, W.R. 2012. Genotypic differences in cotton fruiting. In Derrick M. Oosterhuis and J.T. Cothren (Eds.) Flowering and Fruiting in Cotton (pp. 13-24). The Cotton Foundation, Reference book series no. 8, Cordova, TN, USA.

Source : The ICAC Recorder, Vol. XXXIII No.1, March 2015.

Production of Fibres

(In Mn. Kg)

As on (Oct-Sept.) PSF ASF PPSF VSF 2005-06 4097 628.15 107.81 3.08 228.98 968.02 2006-07 4760 791.99 97.13 3.52 246.83 1139.47 2007-08 5219 879.61 81.23 3.43 279.90 1244.17 2008-09 4930 750.12 79.50 3.44 323.75 1065.81 2009-10 5185 872.13 90.45 3.38 302.09 1288.05 2011-12 5899 829.74 77.71 4.08 322.64 1234.17 2013-14 845.05 96.12 3.71 361.02 1306.89 2013-14 845.05 96.12 3.71 361.02 1308.89 2014-15 (P) 881.56 92.54 4.62 365.17 131.39 2015-16 (Apr-Jun) (P) 216.34 27.47 10.51 10.32 Jun 71.56		Raw		Synthetic		Cellulosic	
2005-06 4097 628.15 107.81 3.08 228.98 968.02 2006-07 4760 791.99 97.13 3.52 246.83 1139.47 2007-08 5219 879.61 81.23 3.43 279.90 3.44 232.75 1065.81 2009-10 5185 872.13 90.45 3.38 302.09 1284.05 2010-11 5763 896.33 79.48 3.74 305.10 1284.65 2011-12 5899 829.74 77.71 4.08 322.64 1234.17 2012-13 845.05 96.12 3.71 361.02 1306.80 2013-14 845.05 92.54 4.62 365.17 1343.89 2013-16 (Apr-Jun) (P) 815.66 92.54 4.62 365.17 1343.89 2014-15 (P) 815.64 9.27 26.39 100.58 May 71.66 8.86 0.30 30.91 111.35 <td>As on</td> <td></td> <td>PSF</td> <td>ASE</td> <td>PPSF</td> <td>VSF</td> <td>Sub Total</td>	As on		PSF	ASE	PPSF	VSF	Sub Total
2006-07 4760 791.99 97.13 3.52 246.83 1139.47 2007-08 5219 879.61 81.23 3.43 279.90 1244.17 2008-09 4930 750.12 79.50 3.44 232.75 1065.81 2009-10 5185 872.13 90.45 3.38 302.09 1284.65 2010-11 5763 896.33 79.48 3.74 305.10 1284.65 2011-12 5899 829.74 77.71 4.08 322.64 1234.17 2013-14 - 845.95 7.59 4.62 365.17 1343.89 2014-15 (P) 216.34 27.47 0.05 66.4 311.30 2015-16 (Apr-Jun) (P) 216.54 8.26 0.31 30.80 110.32 2015-17 April 70.67 8.54 0.31 30.80 110.32 Jun 72.66 7.78 0.34 30.97 11.35	2005.06						068.02
2007-08 5219 879.61 81.23 3.43 279.90 1244.17 2008-09 4930 750.12 79.50 3.44 232.75 1065.81 2010-10 5185 872.13 90.45 3.34 302.09 1268.05 2011-12 5899 829.74 77.71 4.08 322.64 1234.17 2012-13 845.05 73.59 4.26 337.49 1263.39 2013-14 845.05 96.12 3.71 361.02 1306.80 2014-15 (P) - 815.66 82.54 4.62 365.17 1343.89 2015-16 (Apr.Jun) (P) 216.34 27.47 0.95 66.54 131.30 May 70.67 8.54 0.31 30.80 110.32 Jun 71.56 8.08 0.30 30.51 110.45 Jul 72.67 8.54 0.31 30.80 110.45 Jun							
2008-09 4930 750.12 79.50 3.44 232.75 1065.81 2009-10 5185 872.13 90.45 3.38 302.09 1268.05 2010-11 5763 896.33 79.48 3.74 305.10 1284.65 2011-12 5899 829.74 77.71 4.08 322.64 337.49 1263.39 2013-14 845.95 96.12 3.71 361.02 1306.80 2014-15 (P) 881.56 92.54 4.62 365.17 1343.89 2015-16 (Apr-Jun) (P) 216.54 27.47 0.95 66.54 100.58 May 70.67 8.54 0.31 30.80 110.32 Jun 72.67 8.68 0.32 30.81 110.45 Mayus 72.67 8.63 0.28 30.81 110.45 Jul 72.67 8.63 0.28 30.81 110.45 S							
2009-10 5185 872.13 90.45 3.38 302.09 1268.05 2010-11 5763 896.33 79.48 3.74 305.10 1284.65 2011-12 5899 829.74 77.71 4.08 337.49 1263.39 2013-14 845.05 96.12 3.71 361.02 1306.80 2014-15 (P) 216.34 27.47 805 365.17 1343.89 2015-16 (Apr-Jun) (P) 216.34 27.47 80.5 65.6 0.27 26.39 100.58 May 70.67 8.54 0.31 30.80 110.32 Jun 72.66 8.02 31.44 114.69 September 72.67 8.63 0.28 30.98 111.25 August 72.67 8.63 0.28 30.98 112.56 November 70.68 8.28 0.31 30.49 106.73 D							
2010-11 5763 896.33 79.48 3.74 305.10 1284.65 2011-12 5899 829.74 77.71 4.08 322.64 1234.17 2012-13 845.95 96.12 3.71 361.02 1306.80 2013-14 845.95 96.12 3.71 361.02 1304.80 2014-15 (P) 881.56 92.54 4.62 365.17 1343.89 2015-16 (Apr-Jun) (P) 216.34 27.47 0.95 66.54 311.30 May 70.67 8.54 0.31 30.80 110.32 Jun 70.67 8.54 0.31 30.97 111.35 August 70.67 8.54 0.32 31.44 114.69 September 72.26 7.78 0.34 30.97 111.35 August 72.67 8.53 0.28 30.98 110.67 October							
2011-12 5899 829.74 77.71 4.08 322.64 1234.17 2012-13 848.05 73.59 4.26 337.49 1263.39 2013-14 845.95 96.12 3.71 361.02 1306.80 2014-15 (P) 881.56 92.54 4.62 365.17 1343.89 2015-16 (Apr-Jun) (P) 216.34 27.47 0.95 66.54 311.30 May 70.67 8.54 0.31 30.80 110.45 Jun 71.56 8.08 0.30 30.51 110.45 Jun 72.66 7.78 0.34 30.97 111.35 August 72.67 8.63 0.28 31.44 114.69 September 72.67 8.63 0.28 30.81 110.45 November 70.68 8.62 0.31 30.86 118.26 November							
2012-13 848.05 73.59 4.26 337.49 1263.39 2013-14 845.95 96.12 3.71 361.02 1306.80 2014-15 (P) 881.56 92.54 4.62 355.17 1343.89 2015-16 (Apr-Jun) (P) 216.34 27.47 0.95 66.54 311.30 May 216.34 27.47 0.95 66.54 311.30 Jun 70.67 8.54 0.31 30.80 110.32 Jun 72.26 7.78 0.34 30.97 111.35 August 72.67 8.63 0.22 29.58 110.67 September 72.67 8.63 0.28 30.98 112.56 November 72.67 8.63 0.28 30.98 112.56 November 70.68 8.62 0.31 30.88 110.49 January							
2013-14 845.95 96.12 3.71 361.02 1306.80 2014-15 (P) 881.56 92.54 4.62 365.17 1343.89 2015-16 (Apr-Jun) (P) 216.34 27.47 0.95 66.54 311.30 DIN 216.34 27.47 0.95 66.54 311.30 DIN DIN April 65.66 8.26 0.32 30.80 110.32 Jun 71.56 8.08 0.30 30.51 111.45 Jul 72.26 7.78 0.34 30.97 111.35 August 72.67 8.63 0.28 30.88 110.49 September 72.67 8.63 0.31 30.88 110.52 January 70.68 8.62 0.31 30.86 108.34 February 70.40 6.76 0.32 30.86							
2014-15 (P) 881.56 92.54 4.62 365.17 1343.89 2015-16 (Apr-Jun) (P) 216.34 27.47 0.95 66.54 311.30 2013-16 (Apr-Jun) (P) 2013-12 (P) 26.39 100.58 May 65.66 8.26 0.27 26.39 100.58 May 70.67 8.54 0.31 30.61 110.45 Jun 72.66 7.78 0.34 30.97 111.35 August 72.67 8.63 0.22 29.58 110.67 October 72.67 8.63 0.28 30.98 112.56 November 70.68 8.28 0.31 30.88 110.49 January 70.40 6.76 0.32 30.86 108.34 February 70.40 6.76 0.33 27.61 99.82 March 70.24							
2015-16 (Apr-Jun) (P) 216.34 27.47 0.95 66.54 311.30 2013-14 (P) April 65.66 8.26 0.27 26.39 100.58 May 70.67 8.54 0.31 30.80 110.32 Jun 71.56 8.08 0.30 30.51 110.45 Jul 72.26 7.78 0.34 30.97 111.35 August 72.29 8.58 0.22 29.58 110.67 October 72.67 8.63 0.28 30.98 112.56 November 70.68 8.62 0.31 30.86 106.83 December 70.48 8.62 0.31 30.86 108.34 January 70.48 8.52 0.40 31.40 10.70 January 70.79 7.48 0.36 31.30 109.93 Jan							
April 65.66 8.26 0.27 26.39 100.58 May 70.67 8.54 0.31 30.80 110.32 Jun 71.56 8.08 0.30 30.51 110.45 Jul 72.26 7.78 0.34 30.97 111.35 August 72.26 7.78 0.34 30.97 111.45 September 72.29 8.58 0.22 29.58 110.67 October 72.67 8.63 0.28 30.98 112.56 November 68.28 8.28 0.31 30.88 110.49 January 70.68 8.62 0.31 30.86 108.34 February 64.87 7.01 0.33 27.61 99.82 March 70.79 7.48 0.36 31.30 109.93 June 70.62 8.32	,						
April 65.66 8.26 0.27 26.39 100.58 May 70.67 8.54 0.31 30.80 110.32 Jun 71.56 8.08 0.30 30.51 110.45 Jul 72.26 7.78 0.34 30.97 111.35 August 72.67 8.63 0.32 31.44 114.69 September 72.29 8.58 0.22 29.58 110.67 October 72.67 8.63 0.28 30.98 112.56 November 68.28 8.28 0.31 30.88 110.49 January 70.68 8.62 0.31 30.86 108.34 February 70.40 6.76 0.32 30.86 108.34 March 71.94 7.32 0.40 31.04 109.05 March 70.79 7.48	2015-16 (Api-Juli) (r)				0.95	00.34	511.50
May 70.67 8.54 0.31 30.80 110.32 Jun 71.56 8.08 0.30 30.51 110.45 Jul 72.26 7.78 0.34 30.97 111.35 August 72.26 7.78 0.34 30.97 111.35 August 72.26 8.58 0.22 29.58 110.67 October 72.67 8.63 0.28 30.98 112.56 November 70.68 8.62 0.31 30.88 110.49 January 70.40 6.76 0.32 30.86 108.34 February 70.40 6.76 0.32 30.86 108.34 March 71.94 7.32 0.40 31.04 100.05 March 70.79 7.48 0.36 31.30 109.93 June 70.79 7.48	A pril				0.27	26.20	100 58
Jun 71.56 8.08 0.30 30.51 110.45 Jul 72.26 7.78 0.34 30.97 111.35 August 74.67 8.26 0.32 31.44 114.69 September 72.29 8.58 0.22 29.58 110.67 October 72.67 8.63 0.28 30.98 112.56 November 68.28 8.28 0.31 29.96 106.83 December 70.68 8.62 0.31 30.88 110.49 January 70.40 6.76 0.32 30.86 108.34 February 64.87 7.01 0.33 27.61 99.82 March 70.24 8.52 0.38 29.91 109.05 May 70.79 7.48 0.36 31.30 109.93 June 70.62 8.32							
Jul72.267.780.3430.97111.35August74.678.260.3231.44114.69September72.298.580.2229.58110.67October72.678.630.2830.98112.56November68.288.280.3129.96106.83December70.688.620.3130.88110.49January70.406.760.3230.86108.34February64.877.010.3327.6199.82March71.947.320.4031.04110.70 2014-15 (P March70.628.320.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August72.148.550.4030.14106.81July81.567.520.4030.14106.81October72.148.350.3631.16112.01November75.148.460.4431.58115.62January75.597.760.4331.31115.09March75.597.760.4331.31115.09March75.597.760.4331.31115.09March							
August 74.67 8.26 0.32 31.44 114.69 September 72.29 8.58 0.22 29.58 110.67 October 72.67 8.63 0.28 30.98 112.56 November 68.28 8.28 0.31 29.96 106.83 December 70.68 8.62 0.31 30.88 110.49 January 70.40 6.76 0.32 30.86 108.34 February 64.87 7.01 0.33 27.61 99.82 March 71.94 7.32 0.40 31.04 110.70 Cult+tr (P) April 70.24 8.52 0.38 29.91 109.05 May 70.62 8.32 0.36 31.30 109.93 June 70.62 8.32 0.36 30.68 114.34 September <td< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· · · · · · · · · · · · · · · · · · ·						
September 72.29 8.58 0.22 29.58 110.67 October 72.67 8.63 0.28 30.98 112.56 November 68.28 8.28 0.31 29.96 106.83 December 70.68 8.62 0.31 30.88 110.49 January 70.40 6.76 0.32 30.86 108.34 February 64.87 7.01 0.33 27.61 99.82 March 71.94 7.32 0.40 31.04 110.70 VOLT							
October72.678.630.2830.98112.56November68.288.280.3129.96106.83December70.688.620.3130.88110.49January70.406.760.3230.86108.34February64.877.010.3327.6199.82March71.947.320.4031.04110.702014-15 (P)April70.248.520.3829.91109.05May70.797.480.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September72.148.350.3631.16112.01November75.148.460.4431.58115.62January75.148.460.4431.58115.62January75.597.760.4331.31115.09March75.597.760.4331.31115.09March75.599.510.3018.42103.78							
November 68.28 8.28 0.31 29.96 106.83 December 70.68 8.62 0.31 30.88 110.49 January 70.40 6.76 0.32 30.86 108.34 February 64.87 7.01 0.33 27.61 99.82 March 70.40 7.32 0.40 31.04 110.70 March 70.24 8.52 0.38 29.91 109.05 May 70.24 8.52 0.38 29.91 109.05 May 70.79 7.48 0.36 31.30 109.93 June 70.62 8.32 0.36 28.62 107.92 July 81.56 6.26 0.33 30.72 118.87 August 72.14 8.35 0.36 31.16 112.01 November 75.14 8.46	-						
December70.688.620.3130.88110.49January70.406.760.3230.86108.34February64.877.010.3327.6199.82March71.947.320.4031.04110.70COLSP20147.320.3829.91109.05March70.248.520.3829.91109.05May70.797.480.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September72.148.350.3631.16112.01November75.148.460.4431.58115.62January75.597.760.4331.31115.99February75.597.760.4331.31115.91March75.597.760.4331.31115.91March75.597.760.4331.31115.92March75.597.760.4331.31115.92March75.597.760.4331.31115.92March75.597.760.4331.31115.93March75.597.760.30							
January70.406.760.3230.86108.34February64.877.010.3327.6199.82March71.947.320.4031.04110.70CU14YCP2014YCPMay70.248.520.3829.91109.05May70.797.480.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September72.148.350.3631.16112.01November77.087.570.4030.21108.26January75.148.460.4431.58115.62January75.327.290.4028.07109.08March75.597.60.4331.31115.09March75.597.60.4331.31115.09March73.327.290.4028.07109.08March75.597.60.4331.31115.09March75.597.60.4331.31115.09March73.629.530.3528.62112.12May75.559.510.3018.42							
February64.877.010.3327.6199.82March71.947.320.4031.04110.702014-15 (P)2014-15 (P)May70.248.520.3829.91109.05May70.797.480.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September68.457.820.4030.14106.81October72.148.350.3631.16112.01November75.148.460.4431.58115.62January73.327.290.4028.07109.08March75.597.760.4331.31115.09March73.529.530.3528.62112.12May73.559.510.3018.42103.78							
March71.947.320.4031.04110.702014-15 (P)April70.248.520.3829.91109.05May70.797.480.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September68.457.820.4030.14106.81October72.148.350.3631.16112.01November75.148.460.4431.58108.26January779.006.040.4031.47116.91February75.597.760.4331.31115.09March75.597.760.4331.31115.09March75.597.760.4331.31115.09March75.597.760.4331.31115.0975.597.760.3528.62112.12May75.559.510.3018.42103.78	•						
2014-15 (P)April70.248.520.3829.91109.05May70.797.480.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September68.457.820.4030.14106.81October72.148.350.3631.16112.01November70.087.570.4030.21108.26December75.148.460.4431.58115.62January75.597.290.4028.07109.08March75.597.760.4331.31115.092015-16 (P)2015-16 (P)May75.559.510.3018.42103.78							
April70.248.520.3829.91109.05May70.797.480.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September68.457.820.4030.14106.81October72.148.350.3631.16112.01November770.087.570.4030.21108.26December75.148.460.4431.58115.62January773.327.290.4028.07109.08March75.597.760.4331.31115.09March75.597.760.4331.31115.09Mardh75.599.530.3528.62112.12May75.559.510.3018.42103.78	Iviaicii				0.40	51.04	110.70
May70.797.480.3631.30109.93June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September68.457.820.4030.14106.81October72.148.350.3631.16112.01November70.087.570.4030.21108.26December75.148.460.4431.58115.62January79.006.040.4031.47116.91February75.597.760.4331.31115.09March73.629.530.3528.62112.12May75.559.510.3018.42103.78	April				0.38	29.91	100.05
June70.628.320.3628.62107.92July81.566.260.3330.72118.87August74.638.670.3630.68114.34September68.457.820.4030.14106.81October72.148.350.3631.16112.01November70.087.570.4030.21108.26December75.148.460.4431.58115.62January79.006.040.4031.47116.91February75.597.290.4028.07109.08March73.629.530.3528.62112.12May75.559.510.3018.42103.78							
July81.566.260.3330.72118.87August74.638.670.3630.68114.34September68.457.820.4030.14106.81October72.148.350.3631.16112.01November70.087.570.4030.21108.26December75.148.460.4431.58115.62January79.006.040.4031.47116.91February75.597.760.4331.31115.09March75.597.760.4331.31115.09May73.629.530.3528.62112.12May75.559.510.3018.42103.78	<u> </u>						
August74.638.670.3630.68114.34September68.457.820.4030.14106.81October72.148.350.3631.16112.01November70.087.570.4030.21108.26December75.148.460.4431.58115.62January79.006.040.4031.47116.91February75.597.760.4331.31115.09March75.597.760.4331.31115.09May73.629.530.3528.62112.12May75.559.510.3018.42103.78							
September68.457.820.4030.14106.81October72.148.350.3631.16112.01November70.087.570.4030.21108.26December75.148.460.4431.58115.62January79.006.040.4031.47116.91February73.327.290.4028.07109.08March75.597.760.4331.31115.09CU15-16 (P)April73.629.530.3528.62112.12May75.559.510.3018.42103.78							
October72.148.350.3631.16112.01November70.087.570.4030.21108.26December75.148.460.4431.58115.62January79.006.040.4031.47116.91February73.327.290.4028.07109.08March75.597.760.4331.31115.092015-16 (P)April73.629.530.3528.62112.12May75.559.510.3018.42103.78	0						
November70.087.570.4030.21108.26December75.148.460.4431.58115.62January79.006.040.4031.47116.91February73.327.290.4028.07109.08March75.597.760.4331.31115.0975.597.760.4331.31115.0975.597.760.4331.31115.0973.629.530.3528.62112.12May75.559.510.3018.42103.78	-						
December75.148.460.4431.58115.62January79.006.040.4031.47116.91February73.327.290.4028.07109.08March75.597.760.4331.31115.09 2015-16 (P April73.629.530.3528.62112.12May75.559.510.3018.42103.78							
January79.006.040.4031.47116.91February73.327.290.4028.07109.08March75.597.760.4331.31115.092015-16 (P)April73.629.530.3528.62112.12May75.559.510.3018.42103.78							
February73.327.290.4028.07109.08March75.597.760.4331.31115.092015-16 (P)April73.629.530.3528.62112.12May75.559.510.3018.42103.78							
March75.597.760.4331.31115.092015-16 (P)April73.629.530.3528.62112.12May75.559.510.3018.42103.78							
2015-16 (P) April 73.62 9.53 0.35 28.62 112.12 May 75.55 9.51 0.30 18.42 103.78							
April73.629.530.3528.62112.12May75.559.510.3018.42103.78						0 - 10 -	
May 75.55 9.51 0.30 18.42 103.78	April				0.35	28.62	112.12
	-						
Ture 07.17 0.43 0.30 19.30 95.40	June		67.17	8.43	0.30	19.50	95.40

(P)= Provisional

Source : Office of the Textile Commissioner

Announces under

"LEARN WITH CAI" series

Programme No. 2014-15/1 on **'LETTER OF CREDIT'**

Faculty: Shri K. Parameswaran,

Corporate Trainer & Advisor, International Trade and Finance

Date: Saturday, 26th September 2015 Time: 8.30 a.m. to 6.00 p.m.

Fees for programme For CAI Members: Rs. 3,000/-For Members of Affiliated Associations: Rs. 3,500/-For Non-Members: Rs. 4,000/-The above fees will include study material, breakfast/lunch and service tax.

> Venue: Conference Room of the Association Cotton Exchange Building, 2nd Floor, Opp. Cotton Green Railway Station, Cotton Green (East), Mumbai 400 033.

For Registration please contact CAI Office, Tel. (022) 3006 3400 – Fax : (022) 2370 0337 Email : school@caionline.in

Celebrating Nariyali Poornima

Members of the Cotton Association of India, performed the annual ritual of Dariya Poojan on the occasion of Nariyali Poornima, on Saturday, August, 29, 2015.

The members including Shri. Pankajbhai Lakdawala, Shri. Kishorbhai Chheda, Shri. Kiranbhai Bheda, Shri. Manojbhai Bangdiwala and Shri. Krishnaraj L. Negandhi, gathered at Girgaum Chowpatty in the early evening to perform the pooja, praying for the all year long prosperity of the cotton trade.

Update on Cotton Acreage (As on 27th August 2015)

(Area in lakh ha)

S1.		Normal	Normal Area	Area sown (during the corresponding week in)											
No	States	of Year	as on Date (2010-2014)	2015	2014	2013	2012	2011	2010						
1	2	3	4	5	6	7	8	9	10						
1.	Andhra Pradesh		19.678	21.220	22.531	19.900	21.170	17.750	17.040						
	Andhra Pradesh (23.95%)	4.800	4.892	4.890	6.291	4.766	5.070	4.251	4.081						
	Telangana (76.05%)	15.240	14.786	16.330	16.240	15.134	16.100	13.499	12.959						
2.	Gujarat	26.140	27.104	27.300	29.810	26.630	23.420	29.560	26.100						
3.	Haryana	5.580	5.684	5.810	6.390	5.570	6.030	5.981	4.450						
4.	Karnataka	5.400	4.856	4.840	7.460	5.080	3.620	4.450	3.670						
5.	Madhya Pradesh	6.200	6.296	5.470	5.730	6.210	6.080	7.060	6.400						
6.	Maharashtra	39.800	40.132	38.020	40.292	38.640	41.270	40.950	39.510						
7.	Orissa	0.900	1.086	1.250	1.240	1.240	1.190	1.020	0.740						
8.	Punjab	5.100	5.152	4.400	4.500	5.050	5.160	5.750	5.300						
9.	Rajasthan	4.200	3.876	4.060	4.162	2.930	4.490	5.250	2.550						
10.	Tamil Nadu	1.300	0.100	0.103	0.070	0.070	0.100	0.150	0.110						
11.	Uttar Pradesh	0.000	0.264	0.210	0.260	0.230	0.300	0.300	0.230						
12.	Others	0.360	0.060	0.000	0.050	0.100	0.000	0.150	0.000						
	Total	115.020	114.289	112.683	122.495	111.650	112.830	118.371	106.100						

Source: Directorate of Cotton Development, Nagpur

(1					~ ~					6	6	6		7	5	7	5	7	7		1	-		1	1	1	5	1	8	
(₹\Quintal)		MfP/K/T ICS-107 Fine 34 mm 3.0-3.8 33	12007 12007	12007	12007	12007	12007	12007	12007	11979	11979	11979		12092	12092	12092	12092	12092	12092	11951	11951	11951	11951	11951	11951	11951	12092	11951	12008	
(₹\C		A/K/T/O ICS-106 Fine 32 mm 3.5-4.9 31	9926 9898	9898	9898 9898	9898	9898	9898	9898	9870	9898	9926		9926	9842	9842	9898	9698	9898	9926	9926	9842	9842	9870	9870	9870	9926	9842	9890	
		M/M/A/K M/M/A/K/I/O ICS-105 ICS-105 Fine Fine 30 mm 31 mm 35-4.9 35-4.9 29 30	9645 9617	9617 2217	9617	9617	9617	9617	9617	9589	9617	9645	:	9645	9561	9561	9617	9617	9617	9645	9645	9561	9561	9589	9589	9589	9645	9561	6096	
		M/M/A/K M ICS-105 Fine 30 mm 3.5-4.9 29	9336 9280	9280	9280	9280	9280	9251	9251	9167	9223	9251		9251	9251	9280	9336	9364	9364	9364	9364	9251	9251	9280	9280	9280	9364	9167	9283	
		GUJ ICS-105 Fine 29 mm 3.5-4.9 28	9505 9476	9476 0476	9476 9476	9476	9476	9476	9448	9420	9448	9505		9561	9561	9561	9617	9645	9645	9758	9758	9673	9617	9617	9617	9673	9758	9420	9558	
		M/M/A/K ICS-105 Fine 29 mm 3.5-4.9 28	9167 9083	9139	9139 9139	9139	9139	9139	9139	9083	9139	9167	:	9223	9223	9280	9336	9308	9280	9392	9392	9308	9251	9280	9280	9308	9392	9083	9219	
		GUJ I GUJ ICS-105 Fine 3.5-4.9 27	9308 9280	9280	9280	9280	9280	9251	9223	9167	9195	9251		9308	9223	9251	9308	9336	9336	9476	9476	9392	9364	9364	9364	9420	9476	9167	9308	
		M/M/A ICS-105 Fine 28 mm 3.5-4.9 27	8970 8858	8914	8914 8914	8914	8914	8914	8914	8830	8886	8914	:	8914	8914	8970	9026	9055	9055	9167	9167	9083	9055	9083	9083	9111	9167	8830	8982	
ES		P/H/R ICS-105 Fine 3.5-4.9 27	9448 9533	9533 0523	9533	9533	9533	9533	9476	9476	9533	9561	•	9617	9617	9617	9673	9701	9701	9758	9758	9758	9786	9814	9842	9870	9870	9448	9629	erage
r rat	10	M/M/A ICS-105 Fine 27 mm 3.5-4.9 26	8886 8886	8886	8886 8886	8886	8886	8886	8830	8802	8830	8830		8830	8830	8886	8942	8970	8970	9026	9026	8942	8914	8830	8830	8858	9026	8802	8889	A = Average
SPO.	August 2015	2014-15 Crop //R M/M/A 105 ICS-105 te Fine mm 27 mm 4.9 3.0-3.4 5 26	8520 8520	8520 8720	8520	8520	8520	8520	8464	8436	8464	8464	АΥ	8464	8464	8520	8577	8605	8605	8661	8661	8577	8548	8548	8548	8548	8661	8436	8533	= Lowest
UNTR	Aug	2014 P/H/R ICS-105 Fine 3.5-4.9 3.5-4.9 26	9308 9392	9392 0300	9392 9392	9392	9392	9392	9336	9336	9392	9420	OLID	9476	9476	9476	9533	9561	9561	9617	9617	9617	9645	9673	9701	9729	9729	9308	9489	Γ
UPCOUNTRY SPOT RATES		M/M/A ICS-105 Fine 3.5-4.9 25	8689 8689	8689	8689 8689	8689	8689	8689	8633	8605	8633	8633	Η	8633	8633	8633	8689	8717	8717	8773	8773	8717	8689	8605	8605	8605	8773	8605	8672	H = Highest
-		M/M/A ICS-105 Fine 26 mm 3.0-3.4 25	8239 8239	8239	8239 8239	8239	8239	8239	8183	8155	8183	8183		8183	8183	8183	8239	8267	8267	8323	8323	8267	8239	8239	8239	8239	8323	8155	8232	F
		P/H/R ICS-202 Fine 3.5-4.9 26 mm 3.5-4.9	9223 9308	9308 0200	9308	9308	9308	9308	9251	9251	9308	9336	:	9392	9392	9392	9448	9476	9476	9533	9533	9533	9561	9589	9617	9645	9645	9223	9404	
		M/M ICS-104 Fine 2.4 mm 4.0-5.5 23	8380 8380	8380	8380 8380	8380	8380	8380	8380	8380	8408	8408		8408	8408	8408	8408	8408	8408	8464	8464	8464	8408	8408	8408	8408	8464	8380	8404	
		KAR ICS-103 Fine 23 mm 4.0-5.5 21	7283 7283	7283	7283	7283	7283	7283	7283	7283	7311	7311	:	7311	7311	7311	7396	7452	7452	7508	7508	7508	7452	7452	7452	7452	7508	7283	7361	
		GUJ ICS-102 Fine 22 mm 4.0-6.0 20	6889 6889	6889	6889 6889	6889	6889	6889	6889	6889	6917	6917		6974	6974	6974	7030	7086	7086	7142	7142	7142	7086	7086	7086	7086	7142	6889	6985	
		P/H/R ICS-201 Fine 5.0-7.0 15	9476 9476	9476	9476	9476	9476	9476	9420	9364	9420	9420		9420	9476	9476	9476	9476	9476	9617	9617	9617	9561	9561	9561	9589	9617	9364	9494	
		P/H/R ICS-101 Fine 5.0-7.0 15	9336 9336	9336	9336 9336	9336	9336	9336	9280	9223	9280	9280	:	9280	9336	9336	9336	9336	9336	9476	9476	9476	9420	9420	9420	9448	9476	9223	9354	
		Growth G. Standard Grade Staple Micronaire Strength/GPT	1 წ	4 L	c 9		8	10	11	12	13	14	15	17	18	19	20	21	22	24	25	26	27	28	29	31	Н	L	А	

	UPCOUNTRY SPOT RATES (Rs./C													
		etres based		er Half M	de & Staple lean Length		S	Spot Rate	(Upcour AUGU		4-15 Cro	p		
Sr. No.	Growth	Grade Standard	Grade	Staple	Micronaire	Strength /GPT	24th	25th	26th	27th	28th	29th		
1	P/H/R	ICS-101	Fine	Below 22mm	5.0-7.0	15	9476 (33700)	9476 (33700)	9476 (33700)	9420 (33500)	9420 (33500)	9420 (33500)		
2	P/H/R	ICS-201	Fine	Below 22mm	5.0-7.0	15	9617 (34200)	9617 (34200)	9617 (34200)	9561 (34000)	9561 (34000)	9561 (34000)		
3	GUJ	ICS-102	Fine	22mm	4.0-6.0	20	7142 (25400)	7142 (25400)	7142 (25400)	7086 (25200)	7086 (25200)	7086 (25200)		
4	KAR	ICS-103	Fine	23mm	4.0-5.5	21	7508 (26700)	7508 (26700)	7508 (26700)	7452 (26500)	7452 (26500)	7452 (26500)		
5	M/M	ICS-104	Fine	24mm	4.0-5.0	23	8464 (30100)	8464 (30100)	8464 (30100)	8408 (29900)	8408 (29900)	8408 (29900)		
6	P/H/R	ICS-202	Fine	26mm	3.5-4.9	26	9533 (33900)	9533 (33900)	9533 (33900)	9561 (34000)	9589 (34100)	9617 (34200)		
7	M/M/A	ICS-105	Fine	26mm	3.0-3.4	25	8323 (29600)	8323 (29600)	8267 (29400)	8239 (29300)	8239 (29300)	8239 (29300)		
8	M/M/A	ICS-105	Fine	26mm	3.5-4.9	25	8773 (31200)	8773 (31200)	8717 (31000)	8689 (30900)	8605 (30600)	8605 (30600)		
9	P/H/R	ICS-105	Fine	27mm	3.5.4.9	26	9617 (34200)	9617 (34200)	9617 (34200)	9645 (34300)	9673 (34400)	9701 (34500)		
10	M/M/A	ICS-105	Fine	27mm	3.0-3.4	26	8661 (30800)	8661 (30800)	8577 (30500)	8548 (30400)	8548 (30400)	8548 (30400)		
11	M/M/A	ICS-105	Fine	27mm	3.5-4.9	26	9026 (32100)	9026 (32100)	8942 (31800)	8914 (31700)	8830 (31400)	8830 (31400)		
12	P/H/R	ICS-105	Fine	28mm	3.5-4.9	27	9758 (34700)	9758 (34700)	9758 (34700)	9786 (34800)	9814 (34900)	9842 (35000)		
13	M/M/A	ICS-105	Fine	28mm	3.5-4.9	27	9167 (32600)	9167 (32600)	9083 (32300)	9055 (32200)	9083 (32300)	9083 (32300)		
14	GUJ	ICS-105	Fine	28mm	3.5-4.9	27	9476 (33700)	9476 (33700)	9392 (33400)	9364 (33300)	9364 (33300)	9364 (33300)		
15	M/M/A/K	ICS-105	Fine	29mm	3.5-4.9	28	9392 (33400)	9392 (33400)	9308 (33100)	9251 (32900)	9280 (33000)	9280 (33000)		
16	GUJ	ICS-105	Fine	29mm	3.5-4.9	28	9758 (34700)	9758 (34700)	9673 (34400)	9617 (34200)	9617 (34200)	9617 (34200)		
17	M/M/A/K	ICS-105	Fine	30mm	3.5-4.9	29	9364 (33300)	9364 (33300)	9251 (32900)	9251 (32900)	9280 (33000)	9280 (33000)		
18	M/M/A/K/T/O	ICS-105	Fine	31mm	3.5-4.9	30	9645 (34300)	9645 (34300)	9561 (34000)	9561 (34000)	9589 (34100)	9589 (34100)		
19	A/K/T/O	ICS-106	Fine	32mm	3.5-4.9	31	9926 (35300)	9926 (35300)	9842 (35000)	9842 (35000)	9870 (35100)	9870 (35100)		
20	M(P)/K/T	ICS-107	Fine	34mm	3.0-3.8	33	11951 (42500)	11951 (42500)	11951 (42500)	11951 (42500)	11951 (42500)	11951 (42500)		

(Note: Figures in bracket indicate prices in Rs./Candy)