

Cotton

Association

COTTON STATISTICS & NI

of India 2023-24 • No. 23 • 5th September, 2023 Published every Tuesday

> Cotton Exchange Building, 2nd Floor, Cotton Green, Mumbai - 400 033 Telephone: 8657442944/45/46/47/48 Email: cai@caionline.in www.caionline.in

Technical Analysis
Price Outlook for Gujarat-ICS-105, 29mm and ICE Cotton Futures for the Period 5th September 2023 to 9th October 2023

Shri. Gnanasekar Thiagarajan is currently the head of Commtrendz Research, an organization which,

specializes in commodity research and advisory to market participants in India and overseas. He works closely with mostly Agri-Business, base metals and precious metals business corporates in India and across the globe helping them in managing their commodity and currency price risk. Further to his completing a post graduate in software engineering, he did a long stint with DowJones, promoters of "The Wall Street Journal" and had the Shri. Gnanasekar Thiagarajan the commodity and forex markets. He opportunity of closely working with

some of the legends in Technical Analysis history in the U.S.

His columns in The Hindu Business Line have won accolades in the international markets. He also writes a fortnightly column on a blog site for The Economic Times on Global commodities and Forex markets. He

Domestic Markets

 The domestic prices remained steady helped by sporadic buying and weather concerns aiding sentiment. Arrivals were still in the 15-20k bales. Farmers seemed to have switched more to pulses and oilseeds this season from cotton as kapas is a long-duration crop harvested over 4-5 pickings. The first picking itself takes 100-120 days, with subsequent ones following every 15-20 days. is a part an elite team of experts for moneycontrol.com in providing market insights. He was awarded "The

> Best Market Analyst", for the category-Commodity markets- Bullion, by then President of India, Mr. Pranab Mukherji.

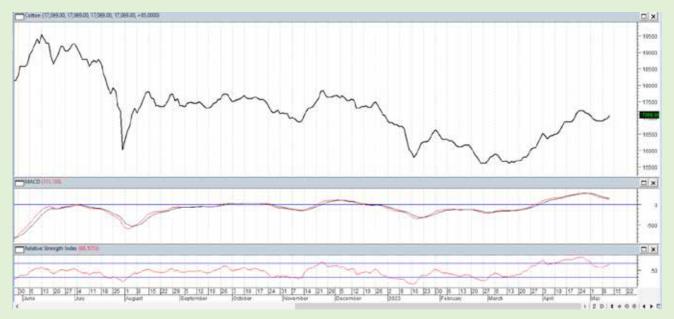
> He is a consultant and advisory board member for leading corporates and commodity exchanges in India and overseas. He is regularly invited by television channels including CNBC and ET NOW and Newswires like

Reuters and Bloomberg, to opine on has conducted training sessions for

Director, Commtrendz Research

markets participants at BSE, NSE, MCX and IIM Bangalore and conducted many internal workshops for corporates exposed to commodity price risk. He has also done several training sessions for investors all over the country and is also a regular speaker at various conferences in India and abroad.

Given its long duration and being a relatively water-intensive crop, cotton needs a minimum of 5-6 irrigations, especially during the flowering, bud and boll formation stages.


 Below average rainfall is expected over most of India in September. At least 290 millimetres of rainfall are needed from August 22 to September 30, 2023 for the remaining monsoon to be normal. • Cotton yarn prices edged higher as market participants anticipate gains in cotton yarn prices in the coming days, bolstered by modestly increased demand expected over the next two to three weeks. A surge in cotton prices further buoyed sentiment in the yarn trade.

International Markets

- ICE cotton futures dipped more than 3% on 5th Sept. on a strong dollar and as investors booked profits after the natural fibre hit a 13-month high in the previous session. The December contract last Friday hit its highest in more than a year on lower crop production estimates from China, which is the biggest consumer of U.S. cotton. Also, more-than-usual rain in China's Xinjiang region this month, may impact the quality and quantity of cotton in the country.
- As expected, ninety cents were the trigger point for grower pricing as seen by a large volume of new forward contracts on Friday. Demand is still lacking as last week's export sales of 66,000 bales reflects. Until this improves, advances will be limited.
- There's some potential for improvement as the weather forecasts show some rains for the next week in the West Texas region which could also be keeping the market from advancing any further for the moment. Overall, the U.S. crop conditions were unchanged in last week's report. However, a closer look state by state, showed declines in Al, Ga, NC and Ok. This week expect further declines following the aftermath of Idalia. Early maturing cotton, of which there was a great deal, was hardest hit because it had the most open bolls.
- The September world supply demand report will be released on Sept. 12. The world crop will likely be projected lower with only minimal changes in consumption. Thus, world ending stocks are likely to shrink. Nevertheless, world carryover will still be 87 million bales or more a bit too big for much price improvement.

Shankar 6 Guj ICS Price Trend

As mentioned in the previous update, a possible double bottom formation and a positive divergence in indicators makes us believe that we have seen the bottom for now. As expected, prices have edged higher to edge higher to 17,200. More upside looks likely to 18,000 in the coming weeks with possibility to stretch even to 19,000 levels on the upside subsequently. Any corrections to 15,000-500 levels looks quite supportive now.



MCX Cotton Candy Nov: After prices bottomed out near 54,000/candy before making a reversal from there, a smart bounce to 60,000 was seen. But it could not follow through higher. Key supports are in the 57,000 range now. As mentioned previously, a consolidation in the 58,000-60,000 range can be seen before

climbing higher towards 62,000 or even higher in the coming month. Prices have tested 63,000 per candy so far and show an inclination to test 63,800-64,000 also in the coming weeks.

ICE Dec 23 Cotton Futures

picture The chart suggest it is more likely to stay under 89.40c and dip towards 87.85/87.50c initially with an outside chance of extending to 86.70. Subsequently, we expect more upside again. Any unexpected above 89.40 could take it towards 90.05 or even higher to 93c in the shortterm.

As mentioned in the previous update, we will not rule out a possibility of an extension to 95-97c on ICE Dec futures due to supply side worries in the U.S., India and China.

As mentioned before, using ICE futures and Options for mitigating prices risk especially when prices are at elevated levels helps cushion the fall and manage high priced inventory of cotton

and yarn is ideal for the industry, but to take that leap of faith is a humungous task for this industry where raw material price moves makes or break the profit margins.

Hedging high priced inventories in a falling market could help offset some losses from the recent fall in cotton prices. Current bottoming levels could be ideal opportunities to Buy Call options in ICE to take advantage of a possible rise in the near-term. However, to protect against falling inventory cost and unexpected bearish factors, one can take Put options in ICE around resistance levels by paying a premium, where losses will be minimum and profits unlimited. The current fall in prices were a good opportunity for physical buyers to have use PUT options to cushion the impact of falling cotton prices and thus the helping in inventory management. MCX Candy contracts recent launched should be a good testing ground for mills and exporters desirous of hedging their price risk in ICE futures and options.

Conclusion:

The domestic prices bounced off 54,000 per candy levels also close to the MSP levels, indicating a strong-long-term support. As cautioned in the previous update, prices could pull back towards 64,000-65,000 levels again. Most negative factors relating to demand have been priced in largely as, price always has an ability to discount present weakness and look ahead where a weather premium could be built into prices. Also, the demand picture could turn friendly as global economies rebound. Strong resistance is presently noticed in the 62,000 per candy levels presently and may find it tough to cross that in the near-term.

COTTON STATISTICS & NEWS

Important support in ICE is at \$85-86c followed by \$81-82 on the downside and in that zone, prices could find a lot of buying interest again. We expect prices to consolidate and gradually edge higher again. Weather in the U.S. and El Nino concerns globally could provide some tailwind to cotton prices in the coming months. The international price indicates that it is in the process of a breakout higher post the consolidation beginning an up move again.

For Shankar 6 Guj ICS supports are seen at 58,000 per candy and for ICE July cotton futures at \$83-84c now. The domestic technical picture looks neutral to mildly bullish. Therefore, we can expect prices to consolidate in a broad range initially, absorbing all the negatives and continue with a bullish bias for the local prices and strong up move expected in the international markets too.

USDINR Monthly Report: September 2023

Shri. Anil Kumar Bhansali, Head of Treasury, Finrex Treasury Advisors LLP, has a rich experience of Banking and Foreign Exchange for the past 36 years. He was a Chief Dealer with an associate bank of SBI

USDINR is expected to trade within the wide range of 82.0 -83.50 for September 2023. Concerns over rising oil prices, slowdown in Shri. Anil Kumar Bhansali equity inflows, Yuan depreciation and strength in US dollar with Fed keeping a cautiously hawkish

tone is expected to keep Rupee on depreciation mode. However, with RBI protecting upper sides of USDINR may limit upside. Immediate support lies at 82.55 below which doors will be open for 82.35 and 82.05. While breach of crucial resistance of 82.95 will lead upside move towards 83.20-83.50.

Key Triggers

FOMC Policy: Fed last raised its benchmark lending rate by 25 bps to 5.50% in July as expected to the highest level since 2001 to tackle abovetarget inflation and signalled the possibility of further increases ahead. Next meeting is on 20th September 2023 and it is anticipated that Fed will keep interest rates unchanged in September but may hike in November.

Chinese Yuan: Rising worries over slow growth in China, the world's second-largest economy may depreciate in coming days. If yuan sustains above 7.34 then 7.37 and 7.43+ is expected. But if it falls below 7.26 then 7.20-7. 16 is the next support level.

Head of Treasury, Finrex Treasury Advisors LLP

Brent Oil Prices: We can expect oil prices to move towards \$90.0+ levels buoyed by growing evidence of supply shortages in the coming months amid production cuts from OPEC members and tropical storm off the US Gulf Coast that disrupted the production.

Trade Balance: With falling trade deficit, India's current account deficit is likely to narrow to about \$10 billion, or 1% of the GDP in the April-June quarter of the ongoing fiscal, according to India Ratings. The trade deficit is likely to shrink towards

\$16-18 bn in coming months, ensuring the CAD to narrows. But, risks from a global slowdown may affect the exports and if oil prices sustain above \$90/bl then this may put some pressure on CAD.

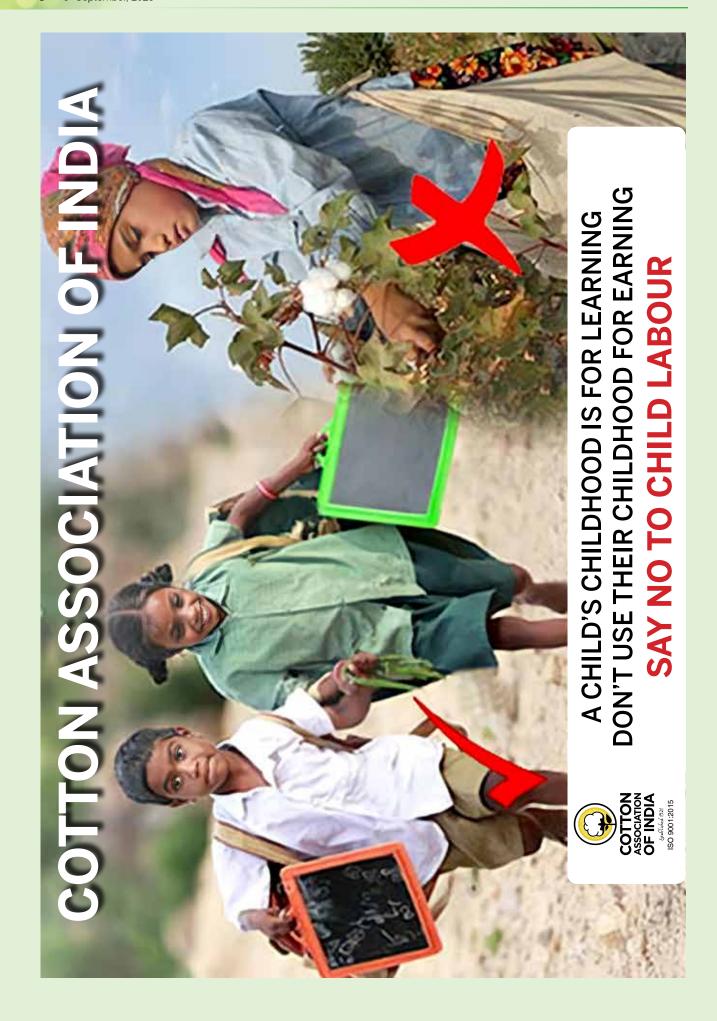
FII Inflows: Despite drop in flows India still attracted the highest level of foreign investment so far in August compared to other emerging and developed markets. Indian economy is booming with Q1 2024 GDP growth hitting 7.8% y/y Vs 6.1% in prior quarter and still remains the shining spot to invest with steady growth outlook. FPIs have invested in Indian equities, accumulating a total of over \$15bn for this calendar year.

FX Reserves: RBI will continue to buy dollars at lower levels to absorb the inflows and sell at higher levels to prevent sharp upside. We can once again see reserves to reach \$600+ bn mark in coming few weeks. The current level of foreign reserves is enough for around 10-11 months of imports.

(The views expressed in this column are of the author and not that of Cotton Association of India)

Celebrating Nariyali Poornima

Members of the Cotton Association of India performed the annual ritual of Dariya Poojan at Girgaum Chowpatty on Wednesday, the 30th August 2023. CAI Additional Vice-President Shri Vinay N. Kotak and others performed the pooja and prayed for all-year-long prosperity of the cotton trade.



COTTON STATISTICS & NEWS

			7	20		Ę.	7			_	_	_	_	_	_		_	(6	_	6		~	C.	C '	CI	CI	CI .					-	_		_	_	_		
(tal)			K/TN	ICS-107	Fine	35 mm	2.8-3.7	3.5%	35	21231	21231	21231	21231	21231	21231	21231	21231	21090	20949	20949	20949		21118	21202	21202	21202	21202	21202	21090	21090	40102	21034	211/4	21174		21174	21231	20134	21111	
(₹\Quintal)			M/M(P)	ICS-107	Fine	35 mm	2.8-3.7	4%	35	20949	20949	20949	20949	20949	20949	20949	20949	20809	20668	20668	20668		20837	20921	20921	20921	20921	20921	50807	20809	70/07	20752	20893	20893		20893	20949	20668	20866	
€			K/TN	ICS-107	Fine	34 mm	2.8-3.7	3.5%	34	20528	20528	20528	20528	20528	20528	20528	20528	20387	20387	20387	20387		20556	20696	96907	50696	50696	20696	20612	20012	90007	20226	20696	20696					20269	
			M/M(P)	ICS-107	Fine	34 mm	2.8-3.7	4%	33				20246	20246	20246	20246	20246	20106	20106	20106	20106		20274	20415										20415					20288	
			SA/ TL/K/ TN/O	ICS-106	Fine	32 mm	3.5-4.2	3%	31				N.A. 2			N.A. 2		N.A. 2	N.A. 2					•				N.A. 2						N.A. 2		N.A. 2	1		-	
			SA/ IL/ K/ IN/0		Fine	31 mm	3.7-4.5	3%	30		16928	16928	16984	17125	17153	17209	17238 I	17238	17294	17434	17519		17519	17519										17491			17575	16872	17306	
			M/M(P)	ICS-105 I	Fine	31 mm	3.7-4.5	3%				16872 10	16928 10	17069 13	17097 13	17153 13	17181 13	17181 13	17238 17	17378 13	17462 1	X	17462 17	17462 17										4					17250 17	
			SA/TL/ M K/O M	ICS-105 IC	Fine	30 mm 3	3.7-4.5		29			16759 16	16816 16	16956 17	16984 17	17041 17	17069 17	17069 17	17125 17	17266 17	17350 17		17350 17	17350 17	٠.	٠.								17238 17					17131 17	
			M/M(P) S/	ICS-105 IC	Fine]	30 mm 36	3.7-4.5 3.		29			16731 16	16788 16	16928 16	16956 16	17013 17	17041 17	17041 17	17097 17	17238 17	17322 17		17322 17	17322 17										17209 17					17103 17	
			GUJ M/	ICS-105 IC	Fine F	29 mm 30	3.7-4.5 3.7					16506 16	16591 16	16731 16	16872 16	16872 17	16872 17	16872 17	16956 17		17209 17	A	17209 17	17209 17										16984 17.					-	ונ
			SA/ TL/K	ICS-105 IC	Fine F	29 mm 29	3.7-4.5 3.7		28		16478 16	16478 16	16535 165	16675 167	16759 168	16816 168	16844 168	16844 168	16900 169	17041 17	17125 173	1		17125 172	٠.									16956 169	1	17041 170	17125 17.	16422 16	75 16 12 15	A – Average IN.A. – INOLAVAIIADIE
																							٠, ,	` '			٠.									13 170	97 171	94 164	16847 16875 - Not Arrai	NO P
LES			.) M/M(P)	105 ICS-105	e Fine	ım 29 mm	1.5 3.7-4.5	(-)	3 28			56 16450	50 16506	35 16647	91 16731	47 16788	31 16816	31 16816	16 16872	72 17013	59 17097		33 17097	33 17097										56 16928		50 17013	72 17097	10 16394	76 168 1 A =	1.7.
UPCOUNTRY SPOT RATES	August 2023		R(L)	05 ICS-105	e Fine	m 29 mm	.,	(,)	28		9 16366	9 16366	1 16450	2 16535	3 16591	3 16647	3 16731	3 16731	7 16816	6 16872	0 16759	Ω		00 16703	4 16703									$\ddot{-}$	D	9 16450	0 16872	3 16310	16609 16576	dge T
SPO		2022-23 Crop	Ceuj	35 ICS-105	Fine	n 28 mm	5 3.7-4.5		27		7 16169	7 16169	5 16281	6 16422	0 16563	6 16563	5 16563	5 16563	1 16647	1 16816	6 16900		6 16900	6 16900										3 16675		8 16759	6 16900	6 16113	1 1660 A 11600	TANCE
TRY	Augus	2022-2	SA/ TL/K	5 ICS-105	Fine	n 28 mm	5 3.7-4.5	(,)	27			16197	9 16225) 16366	16450) 16506	3 16535	3 16535	5 16591	5 16731	9 16816		9 16816	9 16816						. ,				7 16703						
OUN	7		M/M(P)	5 ICS-105	Fine	28 mm	3.7-4.5	3.5%	27		5 16141	16141	16169	16310	16394	16450	3 16478	3 16478	16535	3 16675	, 16759	Н	16759	16759										, 16647		16731	16759	6 16000 1 16524	16591 16524 I = I ourost	רכאיני
UPC			P/H/ R(U)	ICS-105	Fine	28 mm	3.5-4.9	4%	27	٠.	16535	16450	16450	16450	16619	16731	16788	16788	16844	16928	16816		16759	16759	٠.		٠.			. ,				16056						1
			M/M(P)/ SA/TL	ICS-105	Fine	27 mm	3.5-4.9	3.5%	26	٠.			15832	15916	15972	16028	16056	16056	16113	16253	16310		16310	16310						_ ,				15972					16045	ונפון
			M/M(P)/ SA/ TL/G	ICS-105	Fine	27 mm	3.0-3.4	4%	25		15044	15044	15044	15185	15241	15241	15241	15185	15325	15466	15607	П	15607	15607	15550	15522	15466	15382	15269					15269			15607	14904	15296 - His	3 1 1
			P/H/ R(U)	ICS-105	Fine	27 mm	3.5-4.9	%	26	15719	15803	15719	15719	15719	15888	16000	16056	16056	16141	16225	16169		16113	16113	16113	16113	16113	16056	15944	12888	cnect	15803	15635	15466		15550	16225	15466	15917	-
			M/M(P)/ SA/TL	ICS-105	Fine	26 mm	3.0-3.4	4%	22	•	٠		,		•			•	•		•		,	,		•		•						,			•			
			P/H/ R(U) (SG)	ICS-202	Fine	27 mm	3.5-4.9	4.5%	56	15578	15663	15578	15578	15578	15719	15832	15888	15888	15944	16028	15972	0	15916	15916	15916	15916	15916	15860	15/4/	12691	70901	70991	15438	15269	0	15353	16028	15269	15736	
			M/M(P)	ICS-104	Fine	23 mm	4.5-7.0	4%	22	15325	15325	15325	15325	15325	15410	15410	15410	15410	15522	15607	15691		15747	15747	15747	15719	15663	15607	15466	15466	9970	15466	15522	15522		15522	15747	15325	15510	
			KAR	ICS-103	Fine	22 mm	4.5-6.0	%9	21		14341	14201	14060	14060	14116	14116	14116	14060	14088	14116	14201		14201	14201	14201	14172	14144	14088	14032	14032	14032	14032	141/2	14172					14133	
			cnì	ICS-102	Fine	22 mm	4.0-6.0	13%	20		13132	13132	13132	13273	13357	13357	13357	13301	13329	13357	13441	Н	13441	13441		13441								<u>.</u>					13319	
			P/H/R (SG)	ICS-201 I	Fine	Below 22 mm			15			17069 1	17209 1	17209 1	17209 1	17209 1	17209 1	17209 1	17209 1	17350 1	17350 1		17238 1	17238 1										16506 1					17064 1	
			P/H/R F	ICS-101 Ic	Fine	Below 1 22 mm 2	_		15			16928 1	17069 1	17069 1	17069 1	17069 1	17069 1	17069 1	17069 1	17209 1	17209 1		17097 1	17097 1										16366 1					16924 1	
			Growth P	Grade Standard IC	Grade	Staple B	Micronaire 5.	Gravimetric Trash	Strength/GPT	1 1	2 1	3 1	4 1	5 1	7 1	8	9 1	10 1	11 1	12 1	14 1	15	16 1	17 1	18 1	19 1.			52 5			76 I					Н 1	L 1	A 1	

COTTON STATISTICS & NEWS

					JPCOU	NTRY SP	OT RAT	ES				(R	s./Qtl)
		d Descrip netres ba [By		Spot Rate (Upcountry) 2022-23 Crop August - September 2023									
Sr. No	. Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength /GPT	28th	29th	30th	31st	1st	2nd
1	P/H/R	ICS-101	Fine	Below 22mm	5.0 - 7.0	4%	15	16422 (58400)	16366 (58200)		16366 (58200)	16366 (58200)	16591 (59000)
2	P/H/R (SG)	ICS-201	Fine	Below 22mm	5.0 - 7.0	4.5%	15	16563 (58900)	16506 (58700)		16506 (58700)	16506 (58700)	16731 (59500)
3	GUJ	ICS-102	Fine	22mm	4.0 - 6.0	13%	20	13357 (47500)	13357 (47500)	Н	13357 (47500)	13498 (48000)	13638 (48500)
4	KAR	ICS-103	Fine	22mm	4.5 - 6.0	6%	21	14172 (50400)	14172 (50400)		14172 (50400)	14229 (50600)	14369 (51100)
5	M/M (P)	ICS-104	Fine	23mm	4.5 – 7.0	4%	22	15522 (55200)	15522 (55200)	0	15522 (55200)	15578 (55400)	15719 (55900)
6	P/H/R (U) (SG)	ICS-202	Fine	27mm	3.5 – 4.9	4.5%	26	15438 (54900)	15269 (54300)		15353 (54600)	15353 (54600)	15494 (55100)
7	M/M(P)/ SA/TL	ICS-105	Fine	26mm	3.0 - 3.4	4%	25	-	-		-	-	-
8	P/H/R(U)	ICS-105	Fine	27mm	3.5 - 4.9	4%	26	15635 (55600)	15466 (55000)	L	15550 (55300)	15550 (55300)	15691 (55800)
9	M/M(P)/ SA/TL/G	ICS-105	Fine	27mm	3.0 - 3.4	4%	25	15269 (54300)	15269 (54300)		15325 (54500)	15466 (55000)	15607 (55500)
10	M/M(P)/ SA/TL	ICS-105	Fine	27mm	3.5 - 4.9	3.5%	26	15944 (56700)	15972 (56800)		16056 (57100)	16113 (57300)	16253 (57800)
11	P/H/R(U)	ICS-105	Fine	28mm	3.5 - 4.9	4%	27	16225 (57700)	16056 (57100)	I	16141 (57400)	16141 (57400)	16281 (57900)
12	M/M(P)	ICS-105	Fine	28mm	3.7 - 4.5	3.5%	27	16619 (59100)	16647 (59200)		16731 (59500)	16788 (59700)	16928 (60200)
13	SA/TL/K	ICS-105	Fine	28mm	3.7 - 4.5	3.5%	27	16675 (59300)	16703 (59400)		16788 (59700)	16844 (59900)	16984 (60400)
14	GUJ	ICS-105	Fine		3.7 - 4.5	3%	27	16647 (59200)	16675 (59300)	D	16759 (59600)	16900 (60100)	17069 (60700)
15	R(L)	ICS-105	Fine	29mm	3.7 - 4.5	3.5%	28	16366 (58200)	16366 (58200)		16450 (58500)	16506 (58700)	16675 (59300)
16	M/M(P)	ICS-105	Fine		3.7 – 4.5	3.5%	28	16900 (60100)	16928 (60200)	A	17013 (60500)	17069 (60700)	17209 (61200)
	SA/TL/K	ICS-105				3%	28	16928 (60200)	16956 (60300)		17041 (60600)	17097 (60800)	17238 (61300)
	GUJ	ICS-105				3%	28	16956 (60300)	16984 (60400)		17069 (60700)	17209 (61200)	17378 (61800)
	M/M(P)	ICS-105				3.5%	29	17181 (61100)	17209 (61200)	Y	17294 (61500)	17350 (61700)	17491 (62200)
		ICS-105				3%	29	17209 (61200)	17238 (61300)		17322 (61600)	17378 (61800)	17519 (62300)
	M/M(P)	ICS-105				3%	30	17322 (61600)	17434 (62000)		17519 (62300)	17575 (62500)	17716 (63000)
	SA/TL/ K / TN/O	ICS-105				3%	30	17378 (61800)	17491 (62200)		17575 (62500)	17631 (62700)	17772 (63200)
	SA/TL/K/ TN/O	ICS-106				3%	31	N.A. (N.A.)	N.A. (N.A.)		N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)
	M/M(P)	ICS-107				4%	33	20415 (72600)	20415 (72600)		20415 (72600)	20443 (72700)	20528 (73000)
	K/TN	ICS-107				3.5%	34	20696 (73600)	20696 (73600)		20696 (73600)	20724 (73700)	20781 (73900)
	M/M(P)	ICS-107				4%	35	20893 (74300)	20893 (74300)		20893 (74300)	20921 (74400)	21006 (74700)
27	K/TN	ICS-107	Fine	35mm	2.8 - 3.7	3.5%	35	21174 (75300)	21174 (75300)		21174 (75300)	21202 (75400)	21259 (75600)

(Note: Figures in bracket indicate prices in Rs./Candy)