Cotton Association

 of India
Technical Analysis

Price Outlook for Gujarat-ICS-105, 29mm and ICE Cotton Futures for the period $4^{\text {th }}$ October, 2022 to $6^{\text {th }}$ November, 2022

Shri. Gnanasekar Thiagarajan is currently the head of Commtrendz Research, an organization which, specializes in commodity research and advisory to market participants in India and overseas. He works closely with mostly Agri-Business, base metals and precious metals business corporates in India and across the globe helping them in managing their commodity and currency price risk. Further to his completing a post graduate in software engineering, he did a long stint with DowJones, promoters of "The Wall Street Journal" and had the opportunity of closely working with some of the legends in Technical Analysis history in the U.S.

His columns in The Hindu Business Line have won accolades in the international markets. He also writes a fortnightly column on a blog site for The Economic Times on Global commodities and Forex markets. He

Domestic Markets

- The domestic cotton futures edged lower sharply as pressure from arrivals and lower demand from mills continue to weigh on the cotton complex. Daily arrivals as per trade sources were in the $32-33000$ bales. Lack of demand with millers preferring to wait for the prices to drop further amidst a decline in global prices, is influencing cotton prices in the country.
is a part an elite team of experts for moneycontrol.com in providing market insights. He was awarded "The
 Best Market Analyst", for the categoryCommodity markets- Bullion, by then President of India, Mr. Pranab Mukherji. He is a consultant and advisory board member for leading corporates and commodity exchanges in India and overseas. He is regularly invited by television channels including CNBC and ET NOW and Newswires like Reuters and Bloomberg, to opine on the commodity and forex markets. He has conducted training sessions for markets participants at BSE, NSE, MCX and IIM Bangalore and conducted many internal workshops for corporates exposed to commodity price risk. He has also done several training sessions for investors all over the country and is also a regular speaker at various conferences in India and abroad.
- Additionally, heavy rains in October could damage ripening crops such as cotton and soybeans in India, the world's leading producer of an array of farm goods that is seen supportive for prices.
- On the supply side, the market is expecting higher production of cotton this season above 350 lakh bales, but subdued demand for raw cotton due to sluggish local and export demand for yarn continues.
- Domestic cotton yarn prices nudged lower again on poor demand. On the demand side, order for yarn have reduced almost by $70-75 \%$ due to global economic slowdown and Ukraine war has affected demand in Europe. Moreover, cheaper imports of Chinese cotton yarn is keeping the cotton demand lower in the country. India's cotton yarn imports have surged nearly three-fold this marketing year, as textile millers/weavers get cheaper Chinese yarn.

International Markets

- ICE cotton futures extended losses to drop more than 2% on Monday, touching their lowest since mid-July as worries of an imminent recession dampened demand for the natural fibre crop. The market remains squarely focused on continued releases of troubling economic news, both domestically and across the world. Prices have dropped despite the downward turn of the dollar that would make U.S. cotton less expensive for overseas buyers.
- Demand remains extremely poor, worse than expected. The most recent week showed only 13 countries were in the market for U.S. cotton. Of equal importance, five of those countries registered cancellation of prior sales greater than the volume of cotton they purchased this week. Cotton is perceived as a luxury item and retail might continue to heat their homes, buy food, buy transportation, but as far as clothing, they are likely to cut back on clothing and that perception is hurting the market.
- Cotton prices will continue to be influenced by daily economic events. A look at the stock markets at any given time will give you a semblance of the direction cotton prices are moving. To stem this month-long decline, it is critical that the July low of 82.5 cents holds. Upward resistance will be found, however, as a return there will require signs of strengthening demand.

Shankar 6 Guj ICS Price Trend

As mentioned in the previous update, we expected prices would eventually drop lower to $23,500-$ 24,000 in the coming weeks. But, it dropped sharply, even below 20,000 levels quickly. Prices are expected to pull back higher initially towards 21,500 followed by 23,000 levels, where it could find strong resistances again. Eventually, it could sustain a bottom out around 17,500-18,000 levels in the coming month.

MCX Oct Contract Chart

The MCX benchmark cotton October futures moved perfectly in line with our expectations. Shorterterm charts suggest that the price would stay above 30,000 levels and edge higher back towards 35,000 levels from where it could again start declining once again towards $28,600-700$. A rise above 37,000

would hint that a breakout type rally would start towards $40,000-41,000$. In the bigger picture we anticipate prices to edge lower towards supports mentioned above, from where a possible intermediate bottom can be seen.

ICE Dec Cotton Futures

ICE Cotton December futures has been witnessing a bearish down move. It smartly pulled back from 82c level July 22 lows, which presently seems like a double bottom in place. We can expect a pull back to $89-90$ c at least immediately or even higher to 95 c where strong resistances will be noted in the coming weeks. Failure to cross 95 c could see further weakness breaking the recent 82 c bottom, reaching targets near 73-74c eventually.

As mentioned before, using ICE futures and Options for mitigating prices risk especially when prices are at elevated levels helps cushion the fall and manage high priced inventory of cotton and yarn; is ideal for the industry. But to take that leap of faith is a humungous task for this industry, where raw material price moves makes or break the profit margins. Hedging high priced inventories in a falling market, could help offset some losses from the recent fall in cotton prices. Current bottoming levels could be ideal opportunities to Buy Call options in ICE to take advantage of a possible rise in the near-term. To protect against falling inventory cost one can take Put options in ICE around resistance levels by paying a premium, where losses will be minimum and profits unlimited.

Conclusion:

The domestic prices have corrected sharply lower from recent highs. Price could be inclined to test 60,000-61,000 per candy in the near-term where it can find a possible near-term bottom. However, more negative factors continue to weigh in on domestic markets by way of arrivals and poor demand, which makes us feel further downside even to 58,000 is likely in the coming months. However, if there are late rains like the previous year and the forecasts presently indicate such a possibility, then all our bearish bets are off.

Important support is at $\$ 82$ c followed by $\$ 75 c$ on the downside and in that zone, prices could find a lot of buying interest again. The domestic prices are still at a premium to ICE though it has corrected from peaks. It has not fallen lower
relative to international prices due to tight stocks. We expect prices to initially pullback higher and then come under pressure again in the coming weeks, before finding a bottom eventually. Prices will now be falling in line with fundamentals, while external factors like On-call sales and speculative fund activity in unlikely to influence it in any major way. The international price indicates that it is in the process of a more downward correction in the coming sessions.

For Guj ICS supports are seen at 19,000/ qQtl and for ICE May cotton futures at \$82c followed by $\$ 74 \mathrm{c}$. The domestic technical picture looks weak and could grind lower eventually. Therefore, we can expect prices to come under pressure with a bearish bias for both the domestic and international markets, but we are on the watchout for any bottoming signs in between.

USDINR Monthly Report: October 2022

Shri. Anil Kumar Bhansali, Head of Treasury, Finrex Treasury Advisors LLP, has a rich experience of Banking and Foreign Exchange for the past 36 years. He was a Chief Dealer with an associate bank of SBI

We expect USDINR to trade within the wide range of 80.50-82.50 for October 2022. DXY, USDCNY as well as oil price movement, FII flows and RBI stance to maintain stability in Rupee will be closely observed. Rupee has slipped below 81.0 levels as US\$ has strengthened, US rate hike bets, FII's outflow, postponed the entry of India to global bonds and dollars buying by oil companies supported upside move in USDINR.

However, RBI closely monitored the foreign exchange market and tried its best by taking appropriate steps to maintain stability in Rupee.

Following will be the key triggers for USDINR in the month of October:-

* Geo-political issues: Investors will remain sensitive to any news regarding US-China tensions, Russia-Ukraine war crisis, RussiaEurope gas supply related updates and will react accordingly, thus affecting the market sentiments. Escalation in the situation will create volatility in the market.

Shri. Anil Kumar Bhansali Head of Treasury,
Finrex Treasury Advisors LLP

* Brent oil prices: Brent oil posted losses for fourth straight month in a row, down sharply by more than 10% and hit 8 -months low of $\$ 83.71 / \mathrm{bl}$ in September. It marked losses of 22% over the JulySeptember quarter. Traders will also keep a watch on OPEC + meet outcome on 5 th October for further cues. OPEC + is expected to consider oil cut of over than 1 mn barrels per day in the October meet.
* FII flows: Domestic markets witnessed outflows in the month of September after experiencing inflows of $\$ 7.346$ bn in the prior two months. In CY 2022 from January to September total outflows stand at $\$ 22.826$ bn, with September witnessing FII's selling of around $\$ 0.437$ bn
* FX Reserves: FX reserves declined $\$ 8.1$ bn from prior week to $\$ 537.52$ bn for the week ended 23rd September, lowest since August 2020, when it was at $\$ 535.25$ bn.
* Trade Balance: India's trade deficit in August 2022 stood at $\$ 27.98$ bn, with exports valued at $\$ 33.92$ bn, up 1.6% on year and imports at $\$ 61.90 \mathrm{bn}$, surged $37.3 \% \mathrm{y} / \mathrm{y}$.
(The views expressed in this column are of the author and not that of Cotton Association of India)

Just one of the reasons, you should use our Laboratory Testing Services.

The Cotton Association of India (CAI) is respected as the chief trade body in the hierarchy of the Indian cotton economy. Since its
origin in 1921, CAl's contribution has been unparalleled in the development of cotton across India.
The CAl is setting benchmarks across a wide spectrum of services targeting the entire cotton value chain. These range from research and development at the grass root level to education, providing an arbitration mechanism, maintaining Indian cotton grade standards, issuing Certificates of Origin to collecting and disseminating statistics and information. Moreover, CAI is an autonomous organization portraying professionalism and reliability in cotton testing.

The CAl's network of independent cotton testing \& research laboratories are strategically spread across major cotton centres in India and are equipped with:
§State-of-the-art technology \& world-class Premier and MAG cotton testing machines
§ HVI test mode with trash\% tested gravimetrically

LABORATORY LOCATIONS

Current locations : • Maharashtra : Mumbai; Yavatmal; Aurangabad; Jalgaon • Gujarat : Rajkot; Ahmedabad • Andhra Pradesh : Adoni \bullet Madhya Pradesh : Khargone •Karnataka : Hubli • Punjab : Bathinda • Telangana: Warangal, Adilabad

COTTON ASSOCIATION OF INDIA

EtaGlished 1921
ISO 9001:2015

\％	兑 美	$\begin{aligned} & \text { E } \\ & \text { 品 } \end{aligned}$	Mi.	
$\underset{z}{e}$	害	$\begin{aligned} & \text { Eg } \\ & \hline 8 \end{aligned}$	$\stackrel{\hat{\delta}}{\dot{\sim}}$	
\％	商 总	先		
$\frac{e}{2}$	券总	$\frac{\tilde{E}}{\stackrel{1}{d}}$	网	슷
	葛	螈	哭	
	号	¢		
$\frac{2}{z}$	咢	唇	皆	
餢	事苞	$\frac{E}{E_{0}}$	笑	
$\frac{e}{2}$	咢	$\begin{aligned} & \text { EI } \\ & \stackrel{y}{8} \end{aligned}$		
5		欴	皆	
あう．	呂	ส		
$\frac{e}{2}$	冡	ת티		
¢	皆		抒 ie ie io	
5	咢	$\begin{aligned} & \text { EII } \\ & \text { Incil } \end{aligned}$	年	
¢゙劵			笭	
$\frac{e}{2}$	$\stackrel{(0}{\dot{\theta}}$	閣	笑	응 껑 앙 앙
运巡	蕃：	$\begin{aligned} & \text { EII } \\ & \text { In } \end{aligned}$		끙 겅 엉 엉 잉
	輰	－	¢i ${ }_{0}^{\circ}$	앗 응 억 걱 것 엇
	$\stackrel{\text { 岢 }}{\text { ¢ }}$	$\stackrel{E}{I}$		
론레	号	$\frac{\tilde{I}}{2}$	率	종 A A ત ત
廐家		厩		
x ${ }^{\text {a }}$	Z	$\underset{\sim}{I}$		
$\frac{e}{2}$	窇 畄	眸		
等	會	䑞		
З	范	$\underset{\text { İ }}{\text { In }}$		
폰	产	亭		앙 응 뀬 뀽 응 호
$\underset{\text { 告 }}{ }$	耪落			

UPCOUNTRY SPOT RATES													
Standard Descriptions with Basic Grade \& Staple in Millimetres based on Upper Half Mean Length [By law 66 (A) (a) (4)]								Spot Rate (Upcountry) 2021-22 Crop September - October 2022					
Sr. No.	Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength /GPT	26th	27th	28th	29th	30th	1st
1	$\mathrm{P} / \mathrm{H} / \mathrm{R}$	ICS-101	Fine	$\begin{aligned} & \text { Below } \\ & \text { 22mm } \end{aligned}$	5.0-7.0	4\%	15	$\begin{array}{r} 14763 \\ (52500) \end{array}$	$\begin{array}{r} 14763 \\ (52500) \end{array}$	$\begin{array}{r} 14622 \\ (52000) \end{array}$	$\begin{array}{r} 14060 \\ (50000) \end{array}$	$\begin{array}{r} 14482 \\ (51500) \end{array}$	$\begin{array}{r} 14285 \\ (50800) \end{array}$
2	$\mathrm{P} / \mathrm{H} / \mathrm{R}$ (SG)	ICS-201	Fine	Below 22 mm	5.0-7.0	4.5\%	15	$\begin{array}{r} 14960 \\ (53200) \end{array}$	$\begin{array}{r} 14960 \\ (53200) \end{array}$	$\begin{array}{r} 14819 \\ (52700) \end{array}$	$\begin{array}{r} 14257 \\ (50700) \end{array}$	$\begin{array}{r} 14679 \\ (52200) \end{array}$	$\begin{array}{r} 14482 \\ (51500) \end{array}$
3	GUJ	ICS-102	Fine	22 mm	4.0-6.0	13\%	20	$\begin{array}{r} 15044 \\ (53500) \end{array}$	$\begin{array}{r} 15044 \\ (53500) \end{array}$	$\begin{array}{r} 14622 \\ (52000) \end{array}$	$\begin{array}{r} 14341 \\ (51000) \end{array}$	$\begin{array}{r} 14060 \\ (50000) \end{array}$	$\begin{array}{r} 14060 \\ (50000) \end{array}$
4	KAR	ICS-103	Fine	23 mm	4.0-5.5	4.5\%	21	$\begin{array}{r} 16591 \\ (59000) \end{array}$	$\begin{array}{r} 16591 \\ (59000) \end{array}$	$\begin{array}{r} 16450 \\ (58500) \end{array}$	$\begin{array}{r} 16310 \\ (58000) \end{array}$	$\begin{array}{r} 16028 \\ (57000) \end{array}$	$\begin{array}{r} 16028 \\ (57000) \end{array}$
5	M/M (P)	ICS-104	Fine	23mm	4.5-7.0	4\%	22	$\begin{array}{r} 20724 \\ (73700) \end{array}$	$\begin{array}{r} 20724 \\ (73700) \end{array}$	$\begin{array}{r} 20724 \\ (73700) \end{array}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{gathered} \text { N.A. } \\ \text { (N.A.) } \end{gathered}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$
6	$\mathrm{P} / \mathrm{H} / \mathrm{R}(\mathrm{U})(\mathrm{SG})$	ICS-202	Fine	27 mm	3.5-4.9	4.5\%	26	$\begin{array}{r} 19684 \\ (70000) \end{array}$	$\begin{array}{r} 19543 \\ (69500) \end{array}$	$\begin{array}{r} 18559 \\ (66000) \end{array}$	$\begin{array}{r} 17716 \\ (63000) \end{array}$	$\begin{array}{r} 17856 \\ (63500) \end{array}$	$\begin{array}{r} 17547 \\ (62400) \end{array}$
7	$\begin{aligned} & \mathrm{M} / \mathrm{M}(\mathrm{P}) / \\ & \mathrm{SA} / \mathrm{TL} \end{aligned}$	ICS-105	Fine	26 mm	3.0-3.4	4\%	25	$\begin{array}{r} 18419 \\ (65500) \end{array}$	$\begin{array}{r} 18419 \\ (65500) \end{array}$	$\begin{array}{r} 17997 \\ (64000) \end{array}$	$\begin{array}{r} 17716 \\ (63000) \end{array}$	$\begin{array}{r} 17434 \\ (62000) \end{array}$	$\begin{array}{r} 17013 \\ (60500) \end{array}$
8	$\mathrm{P} / \mathrm{H} / \mathrm{R}(\mathrm{U})$	ICS-105	Fine	27 mm	3.5-4.9	4\%	26	$\begin{array}{r} 19965 \\ (71000) \end{array}$	$\begin{array}{r} 19825 \\ (70500) \end{array}$	$\begin{array}{r} 18840 \\ (67000) \end{array}$	$\begin{aligned} & 117997 \\ & (64000) \end{aligned}$	$\begin{array}{r} 18137 \\ (64500) \end{array}$	$\begin{array}{r} 17828 \\ (63400) \end{array}$
9	$\begin{aligned} & \mathrm{M} / \mathrm{M}(\mathrm{P}) / \\ & \mathrm{SA} / \mathrm{TL} / \mathrm{G} \end{aligned}$	ICS-105	Fine	27 mm	3.0-3.4	4\%	25	$\begin{array}{r} 18981 \\ (67500) \end{array}$	$\begin{array}{r} 18981 \\ (67500) \end{array}$	$\begin{array}{r} 18559 \\ (66000) \end{array}$	$\begin{array}{r} 18278 \\ (65000) \end{array}$	$\begin{array}{r} 17997 \\ (64000) \end{array}$	$\begin{array}{r} 17575 \\ (62500) \end{array}$
10	$\begin{aligned} & \mathrm{M} / \mathrm{M}(\mathrm{P}) / \\ & \mathrm{SA} / \mathrm{TL} \end{aligned}$	ICS-105	Fine	27 mm	3.5-4.9	3.5\%	26	$\begin{array}{r} 19965 \\ (71000) \end{array}$	$\begin{array}{r} 19965 \\ (71000) \end{array}$	$\begin{array}{r} 19543 \\ (69500) \end{array}$	$\begin{array}{r} 19262 \\ (68500) \end{array}$	$\begin{array}{r} 18981 \\ (67500) \end{array}$	$\begin{array}{r} 18559 \\ (66000) \end{array}$
11	$\mathrm{P} / \mathrm{H} / \mathrm{R}(\mathrm{U})$	ICS-105	Fine	28 mm	3.5-4.9	4\%	27	$\begin{array}{r} 20528 \\ (73000) \end{array}$	$\begin{array}{r} 20387 \\ (72500) \end{array}$	$\begin{array}{r} 19403 \\ (69000) \end{array}$	$\begin{array}{r} 18559 \\ (66000) \end{array}$	$\begin{array}{r} 18278 \\ (65000) \end{array}$	$\begin{array}{r} 17969 \\ (63900) \end{array}$
12	$\mathrm{M} / \mathrm{M}(\mathrm{P})$	ICS-105	Fine	28 mm	$3.7-4.5$	3.5\%	27	$\begin{array}{r} 20387 \\ (72500) \end{array}$	$\begin{array}{r} 20387 \\ (72500) \end{array}$	$\begin{array}{r} 19965 \\ (71000) \end{array}$	$\begin{array}{r} 19684 \\ (70000) \end{array}$	$\begin{array}{r} 19122 \\ (68000) \end{array}$	$\begin{array}{r} 18559 \\ (66000) \end{array}$
13	SA/TL/K	ICS-105	Fine	28 mm	3.7-4.5	3.5\%	27	$\begin{array}{r} 20443 \\ (72700) \end{array}$	$\begin{array}{r} 20443 \\ (72700) \end{array}$	$\begin{array}{r} 20021 \\ (71200) \end{array}$	$\begin{array}{r} 19740 \\ (70200) \end{array}$	$\begin{array}{r} 19178 \\ (68200) \end{array}$	$\begin{array}{r} 18615 \\ (66200) \end{array}$
14	GUJ	ICS-105	Fine	28 mm	$3.7-4.5$	3\%	27	$\begin{array}{r} 20387 \\ (72500) \end{array}$	$\begin{array}{r} 20387 \\ (72500) \end{array}$	$\begin{array}{r} 19965 \\ (71000) \end{array}$	$\begin{array}{r} 19684 \\ (70000) \end{array}$	$\begin{array}{r} 19122 \\ (68000) \end{array}$	$\begin{array}{r} 18700 \\ (66500) \end{array}$
15	R (L)	ICS-105	Fine	29 mm	3.7-4.5	3.5\%	28	$\begin{array}{r} 20528 \\ (73000) \end{array}$	$\begin{array}{r} 20528 \\ (73000) \end{array}$	$\begin{array}{r} 19684 \\ (70000) \end{array}$	$\begin{array}{r} 18559 \\ (66000) \end{array}$	$\begin{array}{r} 18278 \\ (65000) \end{array}$	$\begin{array}{r} 17969 \\ (63900) \end{array}$
16	$\mathrm{M} / \mathrm{M}(\mathrm{P})$	ICS-105	Fine	29 mm	3.7-4.5	3.5\%	28	$\begin{array}{r} 21231 \\ (75500) \end{array}$	$\begin{array}{r} 21231 \\ (75500) \end{array}$	$\begin{array}{r} 20387 \\ (72500) \end{array}$	$\begin{array}{r} 19965 \\ (71000) \end{array}$	$\begin{array}{r} 19684 \\ (70000) \end{array}$	$\begin{array}{r} 19122 \\ (68000) \end{array}$
17	SA/TL/K	ICS-105	Fine	29 mm	$3.7-4.5$	3\%	28	$\begin{array}{r} 21287 \\ (75700) \end{array}$	$\begin{array}{r} 21287 \\ (75700) \end{array}$	$\begin{array}{r} 20443 \\ (72700) \end{array}$	$\begin{array}{r} 20021 \\ (71200) \end{array}$	$\begin{array}{r} 19740 \\ (70200) \end{array}$	$\begin{array}{r} 19178 \\ (68200) \end{array}$
18	GUJ	ICS-105	Fine	29 mm	$3.7-4.5$	3\%	28	$\begin{array}{r} 20668 \\ (73500) \end{array}$	$\begin{array}{r} 20668 \\ (73500) \end{array}$	$\begin{array}{r} 20246 \\ (72000) \end{array}$	$\begin{array}{r} 19825 \\ (70500) \end{array}$	$\begin{array}{r} 19543 \\ (69500) \end{array}$	$\begin{array}{r} 19122 \\ (68000) \end{array}$
19	$\mathrm{M} / \mathrm{M}(\mathrm{P})$	ICS-105	Fine	30 mm	$3.7-4.5$	3.5\%	29	$\begin{array}{r} 21793 \\ (77500) \end{array}$	$\begin{array}{r} 21793 \\ (77500) \end{array}$	$\begin{array}{r} 20949 \\ (74500) \end{array}$	$\begin{array}{r} 20387 \\ (72500) \end{array}$	$\begin{array}{r} 20106 \\ (71500) \end{array}$	$\begin{array}{r} 19684 \\ (70000) \end{array}$
20	SA/TL/K/O	ICS-105	Fine	30 mm	$3.7-4.5$	3\%	29	$\begin{array}{r} 21877 \\ (77800) \end{array}$	$\begin{array}{r} 21877 \\ (77800) \end{array}$	$\begin{array}{r} 21034 \\ (74800) \end{array}$	$\begin{array}{r} 20471 \\ (72800) \end{array}$	$\begin{array}{r} 20190 \\ (71800) \end{array}$	$\begin{array}{r} 19768 \\ (70300) \end{array}$
21	$\mathrm{M} / \mathrm{M}(\mathrm{P})$	ICS-105	Fine	31 mm	$3.7-4.5$	3\%	30	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$
22	$\begin{aligned} & \text { SA/TL/ } \\ & \text { K / TN/O } \end{aligned}$	ICS-105	Fine	31 mm	$3.7-4.5$	3\%	30	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$
23	$\begin{aligned} & \mathrm{SA} / \mathrm{TL} / \mathrm{K} / \\ & \mathrm{TN} / \mathrm{O} \end{aligned}$	ICS-106	Fine	32 mm	3.5-4.2	3\%	31	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { (N.A.) } \end{aligned}$
24	$\mathrm{M} / \mathrm{M}(\mathrm{P})$	ICS-107	Fine	34 mm	2.8-3.7	4\%	33	$\begin{array}{r} 22918 \\ (81500) \end{array}$	$\begin{array}{r} 22918 \\ (81500) \end{array}$	$\begin{array}{r} 22074 \\ (78500) \end{array}$	$\begin{array}{r} 21793 \\ (77500) \end{array}$	$\begin{array}{r} 21793 \\ (77500) \end{array}$	$\begin{array}{r} 21793 \\ (77500) \end{array}$
25	K/TN	ICS-107	Fine	34 mm	2.8-3.7	3.5\%	34	$\begin{array}{r} 23621 \\ (84000) \end{array}$	$\begin{array}{r} 23621 \\ (84000) \end{array}$	$\begin{array}{r} 22777 \\ (81000) \end{array}$	$\begin{array}{r} 22496 \\ (80000) \end{array}$	$\begin{array}{r} 22496 \\ (80000) \end{array}$	$\begin{array}{r} 22496 \\ (80000) \end{array}$
26	$\mathrm{M} / \mathrm{M}(\mathrm{P})$	ICS-107	Fine	35 mm	2.8-3.7	4\%	35	$\begin{array}{r} 23902 \\ (85000) \end{array}$	$\begin{array}{r} 23902 \\ (85000) \end{array}$	$\begin{array}{r} 23058 \\ (82000) \end{array}$	$\begin{array}{r} 22777 \\ (81000) \end{array}$	$\begin{array}{r} 22777 \\ (81000) \end{array}$	$\begin{array}{r} 22777 \\ (81000) \end{array}$
27	K/TN	ICS-107	Fine	35 mm	2.8-3.7	3.5\%	35	$\begin{array}{r} 24324 \\ (86500) \end{array}$	$\begin{array}{r} 24324 \\ (86500) \end{array}$	$\begin{array}{r} 23480 \\ (83500) \end{array}$	$\begin{array}{r} 23199 \\ (82500) \end{array}$	$\begin{array}{r} 23199 \\ (82500) \end{array}$	$\begin{array}{r} 23199 \\ (82500) \end{array}$

(Note: Figures in bracket indicate prices in Rs./Candy)

