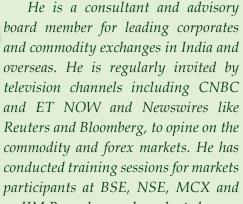


Technical Analysis Price outlook for Gujarat-ICS-105, 29mm and ICE cotton futures for the period 4th January 2022 to 1st February 2022

Shri. Gnanasekar Thiagarajan is currently the head of Commtrendz Research, an organization which, specializes in commodity research and advisory to market participants in India and overseas. He works closely with mostly Agri-Business, base


metals and precious metals business corporates in India and across the globe helping them in managing their commodity and currency price risk. Further to his completing a post graduate in software engineering, he did a long stint with DowJones, promoters of "The Wall Street Journal" and had the opportunity of closely working with some of the legends in Technical Analysis history in the U.S.

His columns in The Hindu Business Line have won accolades

in the international markets. He also writes a fortnightly column on a blog site for The Economic Times on Global commodities and Forex markets. He

We will look into the Gujarat-ICS-105, 29mm prices along with other benchmarks and try to forecast price moves going forward.

As mentioned in the previous update, fundamental analysis involves studying and analysing various reports, data and based on that arriving at some possible direction for prices in the coming months or quarters. is a part an elite team of experts for moneycontrol. com in providing market insights. He was awarded "The Best Market Analyst", for the category-Commodity markets- Bullion, by then President of India, Mr. Pranab Mukherji.

IIM Bangalore and conducted many internal workshops for corporates exposed to commodity price risk. He

has also done several training sessions for investors all over the country and is also a regular speaker at various conferences in India and abroad.

Some of the recent fundamental drivers for the domestic cotton prices are:

• Cotton futures in MCX are at all-time highs in line with international prices, as sentiment still remains positive due to the ongoing supply tightness and robust demand. Rising concerns over Omicron spread across the globe, rising supply in physical market and prospects of no-aggressive

CAI wishes all its readers a very Happy New Year 2022

Shri Gnanasekar Thiagarajan Director, Commtrendz Research

2 • 4th January, 2022

procurement by CCI during peak arrival season, may limit gains in the natural fibre to some extent.

• This is despite being in the thick of the arrival season. Cotton daily arrivals were reported at around 180-185k bales (approximately). On CCI front, reports indicate that the government agency had offered to sell around 3900 bales in auction on Thursday. Cotton arrivals across the country as per Agmarknet data, in the month of December 2021, reached nearly 9.5 lakh tonnes, up by nearly 30% M-o-M & 8% Y-o-Y.

Some of the fundamental drivers for international cotton prices are:

• ICE cotton futures rose more than 3% to a 1-1/2 month high on Tuesday as upbeat sentiment across wider financial and commodity markets seeped into the U.S. cotton market. The first thing that's helping the cotton market is probably all of the outside markets.

• Oil prices rose 2% as OPEC+ producers agreed to stick with their planned increase for February, while appetite for riskier assets remained strong. Higher oil prices make polyester, a substitute for cotton, more expensive. Chicago soybean and corn futures rose as prices were underpinned by forecasts of dry weather in South America that could hurt yields.

• The speculators increased net long position in cotton futures by 3,151 contracts to 72,355 in the week to Dec. 28, data from the Commodity Futures Trading Commission (CFTC) showed on Monday. Compared to the previous week, there has been a build-up of longs by speculators. The only worry is that prices are nudging higher in low volumes that could be a suspect.

• The Federal Commodity Futures Trading Commission (CFTC) publishes a report showing the quantity of cotton that has been bought or sold where the sales price has not yet been fixed. When these parties enter in to the "on call" contract, a futures contract would normally be sold to hedge the transaction. Later, when the mill actually fixes the price, that short futures position would be bought back. The latest report hints that the March position which has the maximum open position, saw some unwinding resulting in the bullishness we are noticing presently in ICE futures.

Guj ICS Price Trend

As mentioned in the previous update, corrections could be short-lived and the trend could resume higher towards 19,000-500 eventually. Prices moved exactly as per expectations. More upside likely to 21,000 at least in the near-term, with a possibility even to extend to 22,500 eventually. But the, highly overbought conditions warn of being cautiously optimistic from present levels.

MCX Jan Contract Chart

The MCX benchmark cotton prices moved higher as expected. The weekly/daily charts are dominated by bullish indications, favouring further advance towards 36870. The steady rise in Volume as well as

Open Interest is likely to fuel a further rally. Charts continue to be bullish but a dip below 35500 might caution about the start of a correction.

ICE Cotton Futures

As mentioned previously, any unexpected rise above \$1.09 could cause doubts on our bearish expectations for 97-98c. Bullish trend and momentum indications in the weekly/daily charts indicate that the next objective would be at 118.30 followed by a strong resistance at 119.20. Supports are near 115.50 and 114.60. It must fall below 114.00 to warn about the possibility of a stronger retracement. Though we see some upside in the coming weeks, medium-term picture warns of a strong decline in the offing.

Conclusion

The domestic prices are hinting at more upside in the coming weeks, but with the possibility of a downward correction and retracements subsequently, as prices seem to be extremely overbought. International cotton futures are showing bullish signs and it needs to be seen if markets are able to take the \$1.20 level, which could be a strong resistance. Important support is at \$1.12 followed by \$1.02c on the downside and in that zone, prices could find a lot of buying interest again. The domestic prices have risen sharply higher as expected, and perfectly in line with our expectations over the past several months.

now. The international price indicates that it is in the process of a mild rise followed by a downward correction in the coming sessions with possibility of extreme moves.

For Guj ICS supports are seen at 18,900/qtl and for ICE Dec cotton futures at \$1.12 followed by \$1.05c. The domestic technical picture looks

extremely bullish now but one needs to be cautiously bullish, as prices are ruling at all-time highs. It could grind higher. The international prices are relatively less bullish compared to the domestic prices. We expect domestic prices to see a sharp retracement lower. Therefore, we can expect sharp moves either ways, in both domestic and international prices.

Important Changes in GST w.e.f. 1st January 2022

Shri. Ronak Sandip Jain is a Partner in Jain Advocates, Ahmedabad. He is a practicing advocate of indirect taxes upto the appellate level in Gujarat as well as other states of India. He has been on various committees of the Gujarat sales tax bar association: Member of Law Committee (2015-2016), Member of Website Committee (2015-2016) and Member of EDP

Issuance of Credit Note under GST Act

Where a Tax Invoice has been issued for supply of goods or services or both and;

• the value declared in the invoice is more than the actual value of the goods or services provided; or the rate of GST or Tax amount charged is at a higher rate than what is applicable for the kind of goods or services supplied; or

• the quantity received by the recipient is less than what is mentioned in the tax invoice; or

• the goods supplied are returned by the recipient; then the registered person, who has supplied such goods or services or both, shall issue a Credit Note to the recipient.

Effect in GSTR -1 Return: Such note is shown in CDNR SHEET.

Issuance of Debit Note under GST Act

Where a Tax Invoice has been issued for supply of goods or services or both and;

Shri. Ronak Jain Partner, Jain Advocates

representation and Website Committee (2016-2017 and 2019-2020).

He is an accredited GST trainer from the National Academy of Customs, Excise & Narcotics, Faridabad. He has delivered lectures on GST at various trade forums, professional associations and also at departmental outreach programmes. He has also participated in various GST discussions in the print and electronic media.

• the value declared in the invoice is less than the actual value of the goods or services provided; or

• the rate of GST or Tax amount charged is at a lower rate than what is applicable for the kind of goods or services supplied; then the registered person, who has supplied such goods or services or both, shall issue a Debit Note to the recipient.

Once the Debit Note is issued, the tax liability of the supplier will increase.

Effect in GSTR -1 Return: Such note is shown in B2B SHEET.

Who is supposed to Issue Credit Note or Debit Note?

• Only a Supplier is allowed to issue a Credit or Debit

(The views expressed in this column are of the author and not that of Cotton Association of India)

US\$INR Monthly Report: January 2022

Shri. Anil Kumar Bhansali, Head of Treasury, Finrex Treasury Advisors LLP, has a rich experience of Banking and Foreign Exchange for the past 36 years. He was a Chief Dealer with an associate bank of SBI

During the month of December-2021, USD and INR witnessed sharp volatility as Shri. Anil Kumar Bhansali the pair made a CY 2021 high of 76.31 from where it declined to low of 74.25. rising virus cases

and hawkish Fed led to sharp upmove in US\$ which dented the risk sentiment and also affected the Rupee levels. The further gains in pair were restricted amidst speculation that Central bank may have intervened to arrest the further decline in the rupee. However, we are of the view that that the rupee is likely to remain under pressure in near term as the virus spread threat still persists while the US\$ too remains upbeat. We are of the view that US\$INR is likely to see the range of 74.0 - 76.0 for the month of January 2022.

Following will be the key triggers for USDINR in the month of January 2022:-

✓ Threat of Third Wave: The risk of third wave in India has increased as the virus spread has started in major cities like Mumbai and Delhi. Rising virus cases may trigger some kind of restrictions which may lead to selling attack on the rupee as this could lead to concern over ensuing economic recovery

 Rise in Brent Oil Prices: Brent Oil prices have risen sharply in month of December from the lows of almost \$65/bl at the start of December to currently almost at \$80/bl, a gain of almost 20%. Oil prices above \$80/bl is known to affect the trade deficit which is already running at almost \$20-22 bn a month since last 3 months

Head of Treasury, Finrex Treasury Advisors LLP

 Fed Policy: US\$ continue to remain upbeat as the Fed has already doubled its tapering amount from \$15bn a month \$30 bn a month with increasing speculation that the Fed may do two rate hikes of 0.25% in 2022. However, the speculation is rising that Fed may do an interest rate hike as early as March 2022 which would exert the pressure on Em currencies including rupee

 \checkmark Upbeat US\$ Index: Dollar index remains upbeat riding on the back of widening monetary

divergence between Fed and other central banks while even the rising virus cases is leading the safe haven buying in US\$

✓ RBI's Forex Strategy: RBI remains an important participant in the Forex market. Currently it has Forex reserve of almost \$635 bn. Hence any surge in US\$INR could also see the central bank selling US\$ at higher rates. Also on the flip side, the central bank may arrest sharp rupee appreciation as it is likely to hurt export and induce further imports.

✓ FII Inflows : FII's have been consistently selling in domestic assets since October. In the last three month, the FII's have almost sold \$5.7 bn, with highest selling of almost \$3.7bn done in December. With expectations of rising interest rates in major countries coupled with the concern over possibility of virus surge in India in Jan-Feb, FII investors may remain cautious towards India.

(The views expressed in this column are of the author and not that of Cotton Association of India)

<u> </u>			K/TN	ICS-107	Fine	35 mm	2.8-3.7	3.50%	35						,		,	,	,	,		,	,																	
(₹\Quintal)			M/M(P) K _/	ICS-107 ICS	Fine F	35 mm 35	2.8-3.7 2.8		35														,		,										,					
(F)Q			K/TN M/	ICS-107 IC	Fine F	34 mm 35	2.8-3.7 2.8	3.5% 4	34	'	'	'		'		'				'	'				'				'	'	'					'	Ċ			
			M/M(P) K,	ICS-107 ICS	Fine Fi	34 mm 34	2.8-3.7 2.8		33	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'		•	'	
			SA/ TL/ K/ M/I TN/O		Fine Fi	32 mm 34.	3.5-4.2 2.8				I	1	'	'	'	'	'	'	'	1	'	1	'		1	'	'	'	'	1	'	'	'	1	'		'	1	1	
							3.7-4.5 3.5-		0 31	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	1	'	'	'	'	'	'	'	'	'	'	'	'	1	'	
			I(P) TL/K/ TN/O		te Fine	лт 31 mm			30	'	1	1	'	'	'	'	'	'	'	1	1	'	'	'	ľ	'	'	'	'	'	'	'	'	'	'	'	'	'	'	
			(d)W/W /T	105 ICS-105	e Fine	um 31 mm	1.5 3.7-4.5		30	'	'	ľ	'	1	'	'	'	'	'	'	1	'	'	'	I	'	'	'	1	'	1	'	'	'	'	'	'	1	1	
			(P) SA/TL/ K/O	.05 ICS-105	e Fine	m 30 mm	1.5 3.7-4.5		29	'	'	ľ	'	'	'	1	'	'	'	'	1	1	'	'	I	ľ	'	'	1	'	1	'	'	'	'	'	'	1	1	
			J M/M(P)	05 ICS-105	e Fine	m 30 mm		3.5%	29	'	ı	ľ	'	'	'	'	'	'	'	ı	1	ľ	'	'	T	1	'	'	1	1	1	'	'	1	'	'	'	1	1	
			en)	05 ICS-105	e Fine	m 29 mm	en		28	'	1	I	1	1	I	1	1	ľ	1	1	1	ľ	1	1	I	ľ	1	1	1	1	Υ	1	1	'	1	I	1	1	1	
			P) SA/ TL/K	05 ICS-105	e Fine	n 29 mm	5 3.7-4.5	6 3%	28	•	1	I	I	1	I	I	I	1	I	1	I	1	ł	1	I	1	I	1	I	1		1	I	I	ı	ı	1	1	•	re
ES			M/M(P)	5 ICS-105	Fine	n 29 mm		3.5%	28	1	'	1	1	1	'	'	'	'	'	'	1	'	'	1	ľ	'	•	'	'	'	A	'	'	'	'	'	1	1	1	= Average
RAT			R(L)	5 ICS-105	Fine	nm 29 mm		3.5%	28	'	ľ	ı	'	ı	1	ı	'	1	1	ľ	ı	1	'	1	ı	1	•	'	ı	1		'	'	'	'	'	•	1	1	A = A
UPCOUNTRY SPOT RATES	December 2021	2020-21 Crop	GUJ	5 ICS-105	Fine	28 mm	en	3%	27	•	1	ľ	'	·	'	1	'	1	'	1	1	1	'	1	ī	1	•	'	1	'	D	•	'	'	'	'	•	1	1	= Lowest
LRY 5	scemb	2020-21	SA/ TL/K	ICS-105	Fine	28 mm		3.5%	27	'	ľ	ľ	'	ľ	'	'	'	ľ	'	1	1	ľ	'	1	ī	·	'	'	ľ	1		'	'	'	'	'	•	1	1	$\mathbf{L} = \mathbf{L}$
NUC	Ď	L N	M/M(P)	ICS-105	Fine	28 mm		3.5%	27	•	ï	ī	•	ı	1	ı	'	1	ŀ	ı	ı	ŀ	•	•	ı	1	•	•	ï	•	Ι	•	•	·	'	•	•	•	1	hest
UPC			P/H/ R(U)	ICS-105	Fine	28 mm	3.5-4.9	4%	27	•	'	ľ				'	'	'	'	'	ľ	'	'	•	ï	1	•	•	ľ	'		•	•	'	'	'	•	1	•	= Highest
			M/M(P)/ SA/TL	ICS-105	Fine	27 mm	3.5-4.9	3.5%	26	•	ï	ï	•	ľ	'	'	'	ı	·	ï	'	ı	'	•	ī	ı	•	'	ľ	·	Γ	'	'		•	•	•	•	•	H
			M/M(P)/ SA/ TL/G	ICS-105	Fine	27 mm	3.0-3.4	4%	25	•	'	ī	•	ľ	'	ŀ	'	'	'	'	ŀ	'	•	•	ī	•	•	•	ī	'		•	•	'	'	'	•	•	•	
			P/H/ R(U)	ICS-105	Fine	27 mm	3.5-4.9	4%	26		ï	ı	•	ŀ	ŀ	ı	,		·	ı	ı	ï	•		ı		•	•	ï	,	0	•	•	·	,	,	•	•	•	
			M/M(P)/ SA/TL	ICS-105	Fine	26 mm	3.0-3.4	4%	25	•	,	ī	•	ŀ		·			,	,	ŀ		•		ī		•	•	ī	•		•	•				•	•	•	
			P/H/ R(U) (SG)	ICS-202	Fine	27 mm	3.5-4.9	4.5%	26		ï	ï		ī	ŀ	·	,	ı	·	ï	,	ı	·	·	ī	ı			ŀ	·	Η		·	·	,		•	•	•	
			M/M(P)	ICS-104	Fine	24 mm	4.0-5.5	4%	23		ī	ī	•	·		,	,		ï	ï	,	ī			ī	ŀ	•		ï		ŀ			,		,	•	•	•	
			KAR	ICS-103	Fine	23 mm	4.0-5.5	4.5%	21		,	ï	ı	·	ı	·	ı	·	ı	,	ı	ı	ı	•	ı	ı	ŀ		ï	,	ı	ı	ı	ı	ī	ı	,	•	1	
			GUJ	ICS-102	Fine	22 mm	4.0-6.0	13%	20	10404	10348	10404	10404	10320	10320	10376	10376	10404	10404	10461	10461	10461	10461	10461	10461	10461	10601	10657	10686	10770	ŀ	11135	11417	11417	11501	11810	11810	10320	10653	
			P/H/R (SG)	ICS-201	Fine	Below 22 mm	5.0-7.0	4.5%	15		,	ī		ŀ	ī	ı			ı	,	ı		ı		ı		ı		ł		·			,		ī		•	1	
			P/H/R	ICS-101	Fine	Below 22 mm		4%	15		ï	ı.	ı.	ı	ı	,	ı			ı	ı		ı		ı		ı		,	,	ı	,	ı.	ı	ı.	ı	1	•	•	
			Growth	Grade Standard	Grade	Staple		Gravimetric Trash	Strength/GPT	1	2	3	4	9	7	80	6	10	11	13	14	15	16	17	18	20	21	22	23	24	25	27	28	29	30	31	Н	L	A	

		Z	107	Je	uu	3.7	%C		с Ч	3 K	2	31	31	31	00	00	00	00	00	00	00	00	00	00	2		22	33		22	22	52	52	5	22	00	22	
intal)		(P) K/TN	07 ICS-107	e Fine	m 35 mm	1.7 2.8-3.7						8 33181	8 33181		7 32900		7 32900											8 33603			7 33322	7 33322	7 33322	7 33322	3 34025		0 33257	
(₹\Quintal)		I M/M(P)	7 ICS-107	Fine	1 35 mm	7 2.8-3.7			23462			32338	32338	32338	32057													32478					32197	32197	33463		32370	
€)		K/TN	7 ICS-107	Fine	34 mm	2.8-3.7			72005			31494	31494	31494	31494		31494											31775			31494		31494	31494	32057		31597	
		M/M(P)	ICS-107	Fine	34 mm	2.8-3.7	4%	00 00000	72002	32057	32057	31213	31213	31213	31213	31213	31213	31213	31213	31213	31213	31213	31213	31213	31213	31213	31354	31494		31213	31213	31213	31213	31213	32057	31213	31359	
		SA/ TL/ K/ TN/0	ICS-106	Fine	32 mm	3.5-4.2	3%		N.A.	N.A.N.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	•	i.	ų.	
		SA/ TL/K/ TN/O	ICS-105	Fine	31 mm	3.7-4.5	3%	30 1007E	10065	19065	19065	19150	19206	19206	19206	19150	19122	19178	19234	19290	19346	19459	19375	19375	19487	19487	1/061	19656		19993	20331	20331	20471	20640	20640	19065	19482	
		M/M(P)	ICS-105	Fine	31 mm	3.7-4.5	3%	00 1 000 E	1 2005	18975	18925	19065	19122	19122	19122	19065	19037	19093	19150	19206	19262	19375	19290	19290	19403	19403	19 4 87	19571		19909	20246	20246	20387	20556	20556	18925	19389	
		SA/TL/ K/O	ICS-105	Fine	30 mm	3.7-4.5	3%	c				18672	18756	18784	18728													5	X		19937		20078	20246	20246		19018	
		M/M(P)	ICS-105	Fine	30 mm	3.7-4.5	3.5%	- 01101				18559 1	18643]	18672]	18643 1		18559 1		18672]		•			•				19122			19796 1	19796 1	19937 2	20106 2	20106		18906 1	
		GUJ	ICS-105	Fine	29 mm	3.7-4.5		c				18194 1	18278 1	18278 1	18278 1			• •	• •		• •	• •	• •	•	• •	•••		9		19093 1	19403 1		19543 1	19684 2	19684 2			ble
		SA/ TL/K	ICS-105 I	Fine	29 mm	3.7-4.5		100E0 1				18222 1	18334 1	18334 1	18306 1			• ·			• •	• •	• •	•		•••		18756 1			19459 1	19403 1	19600 1	19740 1	19740 1	17997 1	18562 1	Availa
		M/M(P)	ICS-105 I0	Fine	29 mm 2	3.7-4.5 3		400E0 16				18194 18	18278 18	18278 18	18250 18													0			19403 19		19543 19	19684 19	19684 19	17997 17	18516 18	= Not
NTES		R(L) M	ICS-105 IC	Fine	29 mm 2	3.7-4.5 3.		4 7 1 0 1 1 0				17153 18	17266 18	17378 18	17434 18		17378 18											18165 18				18503 19	18728 19	18840 19	18840 19		17708 18	N.A. =
T R∕	d	GUJ	ICS-105 IC	Fine F	28 mm 29	3.7-4.5 3.7			- 17		- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 17	- 18	- 18	_	- 18	- 18	- 18	- 18	- 18	- 18	- 17	- 17	rage
/ SPC	2021-22 Crop	SA/ TL/K G	ICS-105 ICS	Fine F	28 mm 28	3.7-4.5 3.7																													Ì			A = Average N.A. = Not Available
UPCOUNTRY SPOT RATES December 2021	2021-										'	'				'			'	'				'				'	'		'				Ċ	Ċ		
INOC		(/ M/M(P)	105 ICS-105	e Fine	ım 28 mm	1.9 3.7-4.5				 6 9	25 -	81 -	- +6	- 90	- 90	- 28	- 22	- 82	34 -	- 16	47 -	59 -	75 -	75 -	16 -	29	- 60	- 60	'	47 -	- 28	- 72	40 -	- 60	- 60	- 69	21 -	L = Lowest
UPC)/ P/H/ L R(U)	05 ICS-105	e Fine	m 28 mm	.9 3.5-4.9			00071	17069	17125	17181	17294	17406	17406	17378	17322	17378	17434	17491	17547	17659	17575	17575	17716	17856	T/969	18109	Γ	18447	18728	18672	18840	19009	19009	17069	17721	= []
		// M/M(P)/ SA/TL	5 ICS-105	Fine	n 27 mm	4 3.5-4.9		07	1		'	'	1	'	'	1	'	1	I	1	1	'	'	I	'	1	'	I	'	'	'	1	'	1	1	1	1	ghest
		M/M(P)/ SA/ TL/G		Fine	1 27 mm	3.0-3.4		C7	' 			,	-	'	'	'	'	-	'	'	' ~	-	, ,	,	'	•	•	، ب	ľ	'	' 0	,	'	'	'	-	- 2	H = High
		P/H/ R(U)	ICS-105	Fine	27 mm	3.5-4.9	4%	707 7 124 EV	17012	16900	16956	16956	17069	17153	17153	17125	17013	17069	17125	17181	17238	17350	17266	17266	17378	17519	176U3	17744	0	18081	18362	18306	18475	18643	18643	16900	17427	-
		M/M(P)/ SA/TL	ICS-105	Fine	26 mm	3.0-3.4	4%	3				'	1	•	1	1	•	1	1	ľ	•	•	•	,	•	1	ŀ	1	ľ	1	'	'	•	'	•	1	1	
		P/H/ R(U) (SG)	ICS-202	Fine	27 mm	3.5-4.9	4.5%	16001	16244	16731	16788	16788	16928	17013	17013	16984	16872	16928	16984	17041	17097	17209	17125	17125	17238	17378	1/462	17603	Η	17940	18222	18165	18334	18503	18503	16731	17281	
		M/M(P)	ICS-104	Fine	24 mm	4.0-5.5	4%	10010	12770	13779	13779	13919	14004	14060	14060	14060	14060	14116	14172	14229	14285	14397	14313	14313	14341	14397	14454	14538	ı	14904	15185	15129	15241	15325	15325	13779	14337	
		KAR	ICS-103	Fine	23 mm	4.0-5.5	4.5%	77	·		,	,	ı			ï		ï	ī	ï	ŀ			ı		ï	ı	ī	ı	,	,	ï		ı	•	•	•	
		GUJ	ICS-102	Fine	22 mm	4.0-6.0	13%	Ą			,	,				,		,	ï	ï				ī		,		,	,	,	,	,						
		P/H/R (SG)	ICS-201	Fine	Below 22 mm	5.0-7.0		10507	07001	13188	13188	13048	12963	12963	12907	12823	12738	12795	12795	12795	12795	12795	12795	12795	12795	12795	C6/71	12851		12907	13048	13048	13048	13188	13526	12738	12947	
		P/H/R I	ICS-101 I	Fine	Below 22 mm	5.0-7.0 5		ŗ				12879 1	12795 1		12738 1			• ·	•		•							12682 1					12879 1	13020 1	13357 1		12779 1	
		Ч.			1 2	2			- ÷	- .			1		τ.			1	1	1	Ξ.				, 		-							1	1	1	1	
		Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	arengun/ GF1	- r	4 67	4	9	7	8	6	10	11	13	14	15	16	17	18	20	21	22	53	24	25	27	28	29	30	31	Η	L	Α	

				l	UPCOUI	NTRY SP	OT RAT	ES				(R	s./Qtl)
		netres bas	sed on		ic Grade & Half Mean (4)]			Sp		(Upcou per 2021			
Sr. No.	. Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength /GPT	27th	28th	29th	30th	31st	1st
3	GUJ	ICS-102	Fine	22mm	4.0 - 6.0	13%	20	11135 (39600)	11417 (40600)	11417 (40600)	11501 (40900)	11810 (42000)	11810 (42000)
								Sp	ot Rate	(Upcou	ntry) 202	21 - 22 Cr	ор
1	P/H/R	ICS-101	Fine	Below 22mm	5.0 - 7.0	4%	15	12738 (45300)	12879 (45800)	12879 (45800)	12879 (45800)	13020 (46300)	13020 (46300)
2	P/H/R (SG)	ICS-201	Fine	Below 22mm	5.0 - 7.0	4.5%	15	12907 (45900)	13048 (46400)	13048 (46400)	13048 (46400)	13188 (46900)	13188 (46900)
3	GUJ	ICS-102	Fine	22mm	4.0 - 6.0	13%	20	-	-	-	-	-	-
4	KAR	ICS-103	Fine	23mm	4.0 - 5.5	4.5%	21	-	-	-	-	-	-
5	M/M (P)	ICS-104	Fine	24mm	4.0 - 5.5	4%	23	14904 (53000)	15185 (54000)	15129 (53800)	15241 (54200)	15325 (54500)	15325 (54500)
6	P/H/R (U) (SG)	ICS-202	Fine	27mm	3.5 - 4.9	4.5%	26	17940 (63800)	18222 (64800)	18165 (64600)	18334 (65200)	18503 (65800)	18503 (65800)
	M/M(P)/ SA/TL	ICS-105	Fine	26mm	3.0 - 3.4	4%	25	-	-	-	-	-	-
8	P/H/R(U)	ICS-105	Fine	27mm	3.5 - 4.9	4%	26	18081 (64300)	18362 (65300)	18306 (65100)	18475 (65700)	18643 (66300)	18643 (66300)
9	M/M(P)/ SA/TL/G	ICS-105	Fine	27mm	3.0 - 3.4	4%	25	-	-	-	-	-	-
10	M/M(P)/ SA/TL	ICS-105	Fine	27mm	3.5 - 4.9	3.5%	26	-	-	-	-	-	-
11	P/H/R(U)	ICS-105	Fine	28mm	3.5 - 4.9	4%	27	18447 (65600)	18728 (66600)	18672 (66400)	18840 (67000)	19009 (67600)	19009 (67600)
12	M/M(P)	ICS-105	Fine	28mm	3.7 - 4.5	3.5%	27	-	-	- -	- -	-	-
13	SA/TL/K	ICS-105	Fine	28mm	3.7 - 4.5	3.5%	27	-	-	-	-	-	-
14	GUJ	ICS-105	Fine	28mm	3.7 - 4.5	3%	27	-	-	-	-	-	-
15	R(L)	ICS-105	Fine	29mm	3.7 - 4.5	3.5%	28	18390 (65400)	18559 (66000)	18503 (65800)	18728 (66600)	18840 (67000)	18840 (67000)
16	M/M(P)	ICS-105	Fine	29mm	3.7 - 4.5	3.5%	28	19037 (67700)	19403 (69000)	19346 (68800)	19543 (69500)	19684 (70000)	19684 (70000)
17	SA/TL/K	ICS-105	Fine	29mm	3.7 - 4.5	3%	28	19093 (67900)	19459 (69200)	19403 (69000)	19600 (69700)	19740 (70200)	19740 (70200)
18	GUJ	ICS-105	Fine	29mm	3.7 - 4.5	3%	28	19093 (67900)	19403 (69000)	19346 (68800)	19543 (69500)	19684 (70000)	19684 (70000)
19	M/M(P)	ICS-105	Fine	30mm	3.7 - 4.5	3.5%	29	19459 (69200)	19796 (70400)	19796 (70400)	19937 (70900)	20106 (71500)	20106 (71500)
20	SA/TL/K/O	ICS-105	Fine	30mm	3.7 - 4.5	3%	29	19600 (69700)	19937 (70900)	19937 (70900)	20078 (71400)	20246 (72000)	20246 (72000)
21	M/M(P)	ICS-105	Fine	31mm	3.7 - 4.5	3%	30	19909 (70800)	20246 (72000)	20246 (72000)	20387 (72500)	20556 (73100)	20556 (73100)
22	SA/TL/ K / TN/O	ICS-105	Fine	31mm	3.7 - 4.5	3%	30	19993 (71100)	20331 (72300)	20331 (72300)	20471 (72800)	20640 (73400)	20640 (73400)
23	SA/TL/K/ TN/O	ICS-106	Fine	32mm	3.5 - 4.2	3%	31	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)
24	M/M(P)	ICS-107	Fine	34mm	2.8 - 3.7	4%	33	31213 (111000)	31213	31213	31213	31213	31213
25	K/TN	ICS-107	Fine	34mm	2.8 - 3.7	3.5%	34	31494 (112000)	31494	31494	31494	31494	31494
26	M/M(P)	ICS-107	Fine	35mm	2.8 - 3.7	4%	35	32197 (114500)	32197	32197	32197	32197	32197
27	K/TN	ICS-107	Fine	35mm	2.8 - 3.7	3.5%	35	33322	33322	33322 (118500)	33322	33322	33322

(Note: Figures in bracket indicate prices in Rs./Candy)