

Technical Analysis

Price outlook for Gujarat-ICS-105, 29mm and ICE cotton futures for the period 1st March 2022 to 5th April 2022

Shri. Gnanasekar Thiagarajan is currently the head of Commtrendz Research, an organization which, specializes in commodity research and advisory to market participants in India and overseas. He works closely

with mostly Agri-Business, base metals and precious metals business corporates in India and across the globe helping them in managing their commodity and currency price risk. Further to his completing a post graduate in software engineering, he did a long stint with DowJones, promoters of "The Wall Street Journal" and had the opportunity of closely working with some of the legends in Technical Analysis history in the U.S.

His columns in The Hindu Business Line have won accolades in the international markets. He also writes a fortnightly column on a blog site for The Economic Times on Global commodities and Forex markets. He is a part an elite team

We will look into the Gujarat-ICS-105, 29mm prices along with other benchmarks and try to forecast price moves going forward.

As mentioned in the previous update, fundamental analysis involves studying and analysing various reports, data and based on that arriving at some possible direction for prices in the coming months or quarters.

Some of the recent fundamental drivers for the domestic cotton prices are:

of experts for moneycontrol.com in providing market insights. He was awarded "The Best Market Analyst", for the category- Commodity markets- Bullion, by then President of India, Mr. Pranab Mukherji.

> He is a consultant and advisory board member for leading corporates and commodity exchanges in India and overseas. He is regularly invited by television channels including CNBC and ET NOW and Newswires like Reuters and Bloomberg, to opine on the commodity and forex markets. He has conducted training sessions for markets participants at BSE, NSE, MCX and

IIM Bangalore and conducted many

internal workshops for corporates exposed to commodity price risk. He has also done several training sessions for investors

all over the country and is also a regular speaker at

various conferences in India and abroad.

Shri Gnanasekar Thiagarajan Director, Commtrendz Research

- Cotton futures in MCX corrected lower from all-time highs made in the recent weeks, as sentiment still remains positive due to the ongoing supply tightness and robust demand. Daily arrivals were reported at around 100k bales (approximately). However, while shipments continue to be strong due to orders won earlier, the spectre of a slump in exports is staring at textile and garment firms as new orders are hard to come by due to the high cost of raw material.
- Conventionally, during the January-February period, mandi arrivals of cotton peak and remain in

the range of Rs 2.5-3 lakh bales (one bale is 170 kg), but this year has been quite an exception. Following changes have been made by Cotton Association of India (CAI) for India cotton balance sheet from its prior month estimates.

• Domestic consumption is down at 340 lakh bales, while production is estimated down at 343.13 lakh bales, exports also down at 45 lakh bales and imports at 15 lakh bales remain unchanged. Arrivals till January 31 at 192.20 lakh bales. Stocks with mills: 75 lakh bales (81 days for use). Stocks with CCI, Maharashtra Federation, MNCs, Ginners, Traders, MCX, etc: 58.20 lakh bales.

Some of the fundamental drivers for international cotton prices are:

- ICE cotton futures rose more than 3% on Tuesday, tracking gains in grain and oil markets as the Russia-Ukraine crisis deepened. Russia warned Kyiv residents to flee their homes and rained rockets down on Kharkiv, as Russian commanders who have failed to achieve a quick victory shifted their tactics to intensify the bombardment of Ukrainian cities.
- Oil prices also rose, driven by concerns over supply disruptions caused by the Ukraine crisis and sanctions against Russia. The cotton market is closely following other markets, especially crude and grains. Chicago wheat futures hit their highest level in almost 14 years as traders feared a prolonged disruption to global supplies following Russia's invasion of fellow grain exporter Ukraine.
- However, demand concerns are emerging because inflationary pressures besieging consumers, while Russia's invasion of Ukraine has spurred a risk-off mood. Researcher Cotlook sees a surplus in 2022-23, while the USDA sees output trailing demand. The USDA said that domestic sowing will climb 13% from a year earlier to 12.7 million acres, encouraged by higher prices, topping a projection from the National Cotton Council.

GUJ ICS Price Trend

As mentioned in the previous update, more upside is likely to 21,500-22,000 at least in the near-term with a possibility even to extend to 22,500 eventually. Prices moved exactly in line with our expectations so far. But the corrections are quite shallow, which makes us feel that there could be some more upside. But extreme moves on the upside warn of being cautiously optimistic from the present levels.

MCX March Contract Chart

The MCX benchmark cotton prices moved higher as expected. As mentioned earlier, the weekly/daily charts are dominated by bullish indications, favouring further advance towards 38,300-500. After a brief correction, we are seeing some strength creep in again. Charts continue to be bullish for 39,000 or even higher, but a corrective dip to 36,000 followed by 35220 is expected subsequently.

ICE Cotton Futures

As mentioned previously, any fall below \$124.50, though not hinted at, could lessen the chances for the expected rise to \$1.30. Such a fall could see a sharper fall to 120.55 followed by an important target around \$1.16 levels in the coming weeks. We saw prices testing \$1.15 levels and then bouncing from there sharply. The rise from there looks impulsive in the short-term, as it has crossed above a tough resistance at 122.00. It could hold above 121.75/1231.30 levels and attempt to rise towards 124.50/125.50 levels. It needs to fall below 120.40 to change this view as such a fall would show that the short-term structure might have started weakening.

Conclusion

The domestic prices are hinting at more upside in the coming weeks, but with the possibility of a downward corrections and retracements from time to time. Potential exists for making newer highs, but it is unlikely to

sustain and follow-through higher. International cotton futures are showing bullish signs and it needs to be seen if markets are able to take the \$1.30 level, which could be a strong resistance. Important support is at \$1.21 followed by \$1.16c on the downside and in that zone, prices could find a lot of buying interest again. The domestic prices have risen sharply higher and much higher relative to international prices, and perfectly in line with our expectations over the past several months now. The international price indicates that it is in the process of a mild rise followed by a downward correction in the coming sessions with possibility of extreme moves.

For Guj ICS supports are seen at 20,500/qtl and for ICE Mar cotton futures at \$1.20-21 followed by \$1.15c. The domestic technical picture looks neutral now and one needs to be cautiously bullish, as prices are ruling at all-time highs. It could grind higher and the international prices are relatively more bullish compared to the domestic prices. We expect domestic prices to see a sharp retracement lower. Therefore, we can expect sharp moves lower in domestic after making new highs and international prices to remain steady.

(The views expressed in this column are of the authors and not that of Cotton Association of India)

CAI Pegs Down its Cotton Crop Estimate for 2021-22 Season to 343.13 Lakh Bales

otton Association of India (CAI) has released its January estimate of the cotton crop for the season 2021-22 beginning from 1st October 2021. The CAI has reduced its cotton crop estimate for the 2021-22 season by 5.00 lakh bales to 343.13 lakh bales of 170 kgs. each (i.e. 364.58 lakh running bales of 160 kgs. each) from its previous estimate of 348.13 lakh bales of 170 kgs. each (equivalent to 369.89 lakh running bales of 160 kgs. each). The statewise break-up of the Cotton Production and Balance Sheet for the season with the corresponding data for the previous crop year are given below.

The total cotton supply for the months of October 2021 to January 2022 is estimated by the CAI at 272.20 lakh bales of 170 kgs. each (equivalent to 289.21 lakh running bales of 160 kgs. each), which consists of the arrivals of 192.20 lakh bales of 170 kgs. each (equivalent to 204.21 lakh running bales of 160 kgs. each), imports of 5 lakh bales of 170 kgs. each (equivalent to 5.31 lakh running bales of 160 kgs. each) and the opening stock estimated by the CAI at 75 lakh bales of 170 kgs. each (equivalent to 79.69 lakh running bales of 160 kgs. each) at the beginning of the season.

Further, the CAI has estimated cotton consumption for the months of October 2021 to January 2022 at 114 lakh bales of 170 kgs. each (equivalent to 121.13 lakh running bales of 160 kgs. each) while the export shipments upto 31st January 2022 are estimated by the CAI at 25 lakh bales of 170 kgs. each (equivalent to 26.56 lakh running bales of 160 kgs. each). Stock at the end of January 2022 is estimated at 133.20 lakh bales of 170 kgs. each (equivalent to 141.53 lakh running bales of 160 kgs. each) including 75 lakh bales of 170 kgs. each (equivalent to 79.69 lakh running bales of 160 kgs. each) with textile mills and the remaining 58.20 lakh bales of 170 kgs. each (equivalent to 61.84

lakh running bales of 160 kgs. each) with the CCI, Maharashtra Federation and others (MNCs, traders, ginners, MCX, etc. including the cotton sold but not delivered).

The CAI Crop Committee has estimated the total cotton supply till end of the cotton season 2021-22 i.e. upto 30th September 2022 at 433.13 lakh bales of 170 kgs. each (equivalent to 460.20 lakh running bales of 160 kgs. each). The total cotton supply consists of the opening stock of 75 lakh bales of 170 kgs. each (equivalent to 79.69 lakh running bales of 160 kgs. each) at the beginning of the cotton season on 1st October 2021, crop for the season estimated at 343.13 lakh bales of 170 kgs. each (equivalent to 364.58 lakh running bales of 160 kgs. each) and the imports for the Season estimated by the CAI at 15 lakh bales of 170 kgs. each (equivalent to 15.94 lakh running bales of 160 kgs. each) as against 10 lakh bales of 170 kgs. each (equivalent to 10.63 lakh running bales of 160 kgs. each) estimated for the previous cotton season 2020-21.

The domestic consumption estimated by the CAI is reduced by 5 lakh bales to 340 lakh bales of 170 kgs. each (equivalent to 361.25 lakh running bales of 160 kgs. each) against its previous estimate of 345 lakh bales of 170 kgs. each (equivalent to 366.56 lakh running bales of 160 kgs. each). The exports for the season have now been estimated at 45 lakh bales of 170 kgs. each (equivalent to 47.81 lakh running bales of 160 kgs. each) i.e. at the same level as estimated at the last meeting of the COCPC on 12th November 2021 against the previous month's estimate of 48 lakh bales of 170 kgs. each (equivalent to 51 lakh running bales of 160 kgs. each). The exports estimate for the previous cotton season 2020-21 was of 78 lakh bales of 170 kgs. each (equivalent to 82.88 lakh running bales of 160 kgs. each). The carry-over stock at the end of the cotton season 2021-22 on 30th September

4 • 1st March, 2022 COTTON STATISTICS & NEWS

2022, is estimated by the CAI at 48.13 lakh bales of 170 kgs. each (equivalent to 51.14 lakh running bales of 160 kgs. each) as against the carry-over stock of 75 lakh bales of 170 kgs. each (equivalent to 79.69 lakh running bales of 160 kgs. each) for the previous cotton season 2020-21.

Highlights of Deliberations held by the CAI Crop Committee on 24th February 2022

The Crop Committee of the Cotton Association of India (CAI) held its first physical meeting after a brief while due to the COVID restrictions imposed by the Government. The Committee arrived at the January estimate of the cotton crop for the 2021-22 crop year and drawn the estimated cotton balance sheet based on the data available from various trade sources, upcountry associations and other stakeholders.

The following are the highlights of the deliberations held at this meeting:-

1. Consumption

The CAI has reduced its consumption estimate for the current crop year by 5 lakh bales to 340 lakh bales of 170 kgs. each (equivalent to 361.25 lakh running bales of 160 kgs. each) from its previous estimate of 345 lakh bales of 170 kgs. each (equivalent to 366.56 lakh running bales of 160 kgs. each) made in the last month. The previous year's consumption estimate was 335 lakh bales of 170 kgs. each (equivalent to 355.94 lakh running bales of 160 kgs. each).

Upto 31st January 2022, the consumption is estimated at 114 lakh bales of 170 kgs. each (equivalent to 121.13 lakh running bales of 160 kgs. each).

2. Production

The CAI has reduced its production estimate for the season 2021-22 to 343.13 lakh bales of 170 kgs. each (equivalent to 364.58 lakh running bales of 160 kgs. each) from its previous estimate of 348.13 lakh bales of 170 kgs. each (equivalent to 369.89 lakh running bales of 160 kgs. each) made during the last month. The changes made in the state-wise cotton production estimates for the season now made compared to those estimated during the last month are given below:-

In lakh bales of 170 kgs. each

States	Reduction (-)
Gujarat	-1.00
Telangana	-2.00
Andhra Pradesh	-0.50
Karnataka	-1.00
Odisha	-0.50
Total	-5.00

The Committee members will have a close watch on the cotton arrivals in the subsequent months and if any addition or reduction is required to be made in the production estimate, the same will be made in the CAI reports.

3. Imports

The estimate of cotton Imports into India has been maintained at 15 lakh bales of 170 kgs. each (equivalent to 15.94 lakh running bales of 160 kgs. each) i.e. at the same level as estimated in the previous month. The imports now estimated for the 2021-22 crop year are more by 5.00 lakh bales of 170 kgs. each than the imports estimate of 10 lakh bales of 170 kgs. each (equivalent to 10.63 lakh running bales of 160 kgs. each) for the previous crop year 2020-21.

Upto 31st January 2022 about 5.00 lakh bales of 170 kgs. each are estimated to have arrived the Indian Ports.

4. Exports

The Committee has adopted the cotton exports estimate of 45 lakh bales of 170 kgs. each (equivalent to 47.81 lakh running bales of 160 kgs. each) made by the Committee for Cotton Production & Consumption at its last meeting held on 12th November 2021 as against its previous month's exports estimate of 48 lakh bales of 170 kgs. each (equivalent to 51 lakh running bales of 160 kgs. each).

Upto 31st January 2022, about 25 lakh bales of 170 kgs. each (equivalent to 26.56 lakh running bales of 160 kgs. each) are estimated to have been shipped.

5. Arrivals

Indian cotton arrivals during the months of October 2021 to January 2022 are estimated at 192.20 lakh bales of 170 kgs. each (equivalent to 204.21 lakh running bales of 160 kgs. each). These arrivals are lower compared to the cotton arrivals of the corresponding months of the 2020-21 crop year. However, if we compare the current year's cotton arrivals with the average cotton arrivals of October to January during the last five years (except the cotton year 2020-21 which was an exceptional year), the current year's cotton arrivals are higher by 15.37 lakh bales of 170 kgs. each compared to the average cotton arrivals of 176.83 lakh bales of 170 kgs. each.

6. Stock as on 31st January 2022

The cotton stocks held by mills in their godowns on 31st January 2022 are estimated at 75 lakh bales of 170 kgs. each (equivalent to 79.69 lakh running bales of 160 kgs. each). The mills have on an average 81 days' cotton stock in their godowns.

The CCI, Maharashtra Federation, MNCs, Ginners, Traders, MCX, etc. are estimated to have a total stock of about 58.20 lakh bales of 170 kgs. each (equivalent to 61.84 lakh running bales of 160 kgs. each) as on 31st January 2022.

Thus, the total stock held by spinning mills and stockists including the stock of cotton sold but not delivered on 31st January 2022 is estimated at 133.20

lakh bales of 170 kgs. each (equivalent to 141.53 lakh running bales of 160 kgs. each).

7. Closing Stock as on 30th September 2022

Closing stock as on 30th September 2022 is estimated by the Committee at 48.13 lakh bales of 170 kgs. each (equivalent to 51.14 lakh running bales of 160 kgs. each).

CAI's Estimates of Cotton Crop for the Season 2021-22 and 2020-21

(in lakh bales of 170 kg.)

		Production	n Estimate		Arrivals as on 3	1st January 2022
State	202	1-22	202	0-21	202	1-22
3 44.0	In running b/s of 160 Kgs. each	In lakh b/s of 170 Kgs. each	In running b/s of 160 Kgs. each	In lakh b/s of 170 Kgs. each	In running b/s of 160 Kgs. each	In lakh b/s of 170 Kgs. each
Punjab	9.64	9.07	11.16	10.50	5.66	5.33
Haryana	17.11	16.10	23.91	22.50	10.32	9.71
Upper Rajasthan	15.24	14.34	20.72	19.50	13.47	12.68
Lower Rajasthan	12.57	11.83	13.81	13.00	8.83	8.31
Total North Zone	54.55	51.34	69.59	65.50	38.28	36.03
Gujarat	96.68	90.99	97.22	91.50	48.86	45.99
Maharashtra	91.86	86.46	86.06	81.00	50.52	47.55
Madhya Pradesh	21.78	20.50	19.66	18.50	13.69	12.88
Total Central Zone	210.32	197.95	202.94	191.00	113.07	106.42
Telangana	44.53	41.91	46.75	44.00	23.34	21.97
Andhra Pradesh	14.66	13.80	17.00	16.00	10.09	9.50
Karnataka	23.96	22.55	25.50	24.00	14.08	13.25
Tamil Nadu	10.63	10.00	7.97	7.50	1.28	1.20
Total South Zone	93.78	88.26	97.22	91.50	48.79	45.92
Orissa	2.74	2.58	3.19	3.00	1.81	1.70
Others	3.19	3.00	2.13	2.00	2.26	2.13
Total	364.58	343.13	375.06	353.00	204.21	192.20

The Balance Sheet drawn by the Association for 2021-22 and 2020-21 is reproduced below:-

(in lakh bales of 170 kg.)

	(iri takri bat	es of 170 kg.)
Details	2021-22	2020-21
Opening Stock	75.00	125.00
Production	343.13	353.00
Imports	15.00	10.00
Total Supply	433.13	488.00
Mill Consumption	300.00	292.00
Consumption by SSI Units	25.00	25.00
Non-Mill Use	15.00	18.00
Total Domestic Demand	340.00	335.00
Available Surplus	93.13	153.00
Exports	45.00 ●	78.00
Closing Stock	48.13	75.00

• As per COCPC meeting held on 12.11.2021

Balance Sheet of 4 months i.e. from 1.10.2021 to 31.01.2022 for the season 2021-22

Details	In lakh b/s of 170 kg.	In '000 Tons
Opening Stock as on 01.10.2021	75.00	1275.00
Arrivals upto 31.01.2022	192.20	3267.40
Imports upto 31.01.2022	5.00	85.00
Total Available	272.20	4627.40
Consumption	114.00	1938.00
Export Shipments upto 31.01.2022	25.00	425.00
Stock with Mills	75.00	1275.00
Stock with CCI, Maha. Fedn., MCX, MNCs, Ginners, Traders & Exporters	58.20	989.40
Total	272.20	4627.40

1)		K/IN	ICS-107	Fine	35 mm	2.8-3.7	3.50%	35							,			,		,		,				,			,	,					
(₹\Quintal)		M/M(P)	ICS-107	Fine	35 mm	2.8-3.7		35														,				,	1		,	,					
(*)		K/TN N	ICS-107 IC	Fine	34 mm 3	2.8-3.7 2		34																											,
		M/M(P)	ICS-107 IC	Fine	34 mm 3	2.8-3.7 2									,		,	,	,	,	,	,					,		,	,	,			,	
		SA/ TL/ K/ M. TN/O		Fine I	32 mm 34	3.5-4.2 2.		_																			,		,						
		SA/ 8 IL/K/ II IN/O I		Fine I	31 mm 32	3.7-4.5 3.								Q													,							,	
		M/M(P) II	ICS-105 IC	Fine I	31 mm 31	3.7-4.5 3.								_																					
		SA/TL/ M/ K/O M/	ICS-105 IC	Fine F	30 mm 31	3.7-4.5 3.7		29						ш		·											Ì								
		M/M(P) SA,	ICS-105 ICS	Fine F	30 mm 30	3.7-4.5 3.7		_							·	į		·	·						·			Ċ						Ċ	
		GUJ M/1	ICS-105 ICS	Fine Fi	29 mm 30	3.7-4.5 3.7			'	•	•	•	'	,	'	•	'		•			•	•	•	•	•	•	•	•			•		Ċ	•
			ICS-105 ICS			3.7-4.5 3.7.			'	'	'	'	'	Ι	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	ľ	'	•
		(P) SA/ TL/K		e Fine	um 29 mm					1	'	•	'	'	'	'	'	'	'	'	'	'	'	'	•	'	'	•		'	'	'	•	•	•
LES) M/M(P)	105 ICS-105	e Fine	ım 29 mm	1.5 3.7-4.5	(1)		'	•	'	•	'	0	'	•	'	'	'	'	'	'	•	•	•	'	'	•	'	'	'	'	•	'	٠
UPCOUNTRY SPOT RATES February 2022		J R(L)	05 ICS-105	e Fine	m 29 mm	3.74.5			1	1	1	•	'	'	'	•	•	'	•	'	'		•	•	•	•	'	•	•	'	'	'	•	•	٠
VTRY SPOT February 2022	2020-21 Crop	(an)	05 ICS-105	e Fine	m 28 mm	5 3.7-4.5			1	•	•	•	'	n	'	'	'	'	'	'	'	'	•	•	•	'	'	•	'	'	'	'	•	•	•
TRY	2020-2	P) SA/ TL/K	35 ICS-105	Fine	n 28 mm	5 3.7-4.5	(1)		1	1	•	•	'		'	•	'	'	'	'	'	•	•	•	•	•	'	•	•	'	'	'	•	•	•
OUN		M/M(P)	JS 1CS-105	Fine	n 28 mm	9 3.7-4.5	(1)	27	1	•	•	•	'	Ø	'	•	•	'	•	'	•	•	•	•	•	1	1	•	•	'	•	'	٠	•	٠
UPC		/ P/H/ R(U)	5 ICS-105	Fine	າ 28 mm	9 3.5-4.9		27		•	•	•	'		'	•	'	'	'	'	'	•	•	•	•	•	•	•	•	'	'	•	•	•	٠
		/ M/M(P)/ SA/TL	5 ICS-105	Fine	27 mm	1 3.5-4.9		26	1	•	•	•	•		'	•	•	'	•	'	'	•	•	•	•	•	1	•	•	'	١	•	٠	٠	•
		M/M(P)/ SA/ TL/G		Fine	27 mm	3.0-3.4				•	•	•	•		•	•	•	•	•	'	'	1	•	•	•	1	1	•	1	'	٠	١	٠	٠	٠
		P/H/ R(U)	ICS-105	Fine	27 mm			26		•	•	•	•	⊢	•	•	•	•	•	'	•	•	٠	•	٠	•	1	٠	٠	'	٠	•	٠	٠	٠
		M/M(P)/ SA/TL	ICS-105	Fine	26 mm	3.0-3.4		22		•	•	•	•	٠	•	٠	•	•	•	•	•	•	٠	•	٠	•	1	٠	•	٠	٠	٠	٠	٠	٠
		P/H/ R(U) (SG)	_	Fine	27 mm			56		•	•	•	٠	0	•	•	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	'	•	٠	٠	•
		M/M(P)	ICS-104	Fine	23 mm	4.5-7.0	4%	22		•	•	•	٠	٠	•	•	٠	•	٠	٠	١	٠	٠	•	٠	•	١	٠	٠	•	٠	•	٠	•	•
		KAR	ICS-103	Fine	23 mm			21			•	•	•	Z	•	•	•	•	•	•	•	٠	٠	٠	٠	•	1	٠	٠	,	٠	•	٠	•	•
		cell	ICS-102	Fine	22 mm	4.0-6.0	13%	2021	14201	14060	13919	13919	13919		13919	13919	13919	14004	14088	14201	14201	14116	٠	٠	•	•	1	•	•	,	•	•	14201	13919	14030
		P/H/R (SG)	ICS-201	Fine	Below 22 mm	5.0-7.0	4.5%	15					ı		•	•	•	•	•	•	•		•			•	1		•	•			•		•
		P/H/R	ICS-101	Fine	Below 22 mm	5.0-7.0	4%	15					ı				•		•	,			•	•			,		•			•	•	٠	•
		Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength/GPT	⊣ (7 0	3	4	5	7	8	6	10	11	12	14	15	16	17	18	19	21	22	23	24	25	26	28	Н	1	4

1)			K/TN	ICS-107	Fine	35 mm	2.8-3.7	3.50%	32900	32900	32900	32619	32619		32338	32338	32338	32338	32338	32057	31775	31213	30932	30651	30651	30369	29807	29807	29807	29526	29245	29245	32900	29245	31335	
(₹\Quintal)			M/M(P) k	ICS-107 IC	Fine	35 mm 3.	2.8-3.7 2		35 31494 32	31494 32	31494 32	30651 32	30651 32		30369 32	30088 32	29807 32	29526 32	29385 32	29104 32	28823 31	28261 31	27979 30	27698 30	27698 30	27558 30	27276 29	27276 29	27276 29	27136 29	27276 29	27276 29	31494 32	27136 29	28939 31	
(₹\Q			K/IN M	ICS-107 IC	Fine	34 mm 3	2.8-3.7 2		34 31213 31		31213 31	30932 30	30932 30		30932 30	30932 30	30932 29	30932 29	30932 29	30651 29	30369 28	29807 28	29526 27	29245 27	29245 27	28964 27	28401 27	28401 27	28401 27	28120 27	28120 27	28120 27	31213 31	28120 27	29893 28	
			M/M(P) K	ICS-107 IC	Fine	34 mm 34	2.8-3.7 2.		30932 31		30932 31	30088 30	30088 30		29807 30	29526 30	29245 30	28964 30	28823 30	28542 30	28261 30	27698 29	27417 29	27136 29	27136 29	26995 28	26714 28	26714 28	26714 28	26573 28	26433 28	26433 28	30932 31	26433 28	28352 29	
			SA/ TL/K/ M, TN/O	ICS-106 IC	Fine I	32 mm 34	3.5-4.2 2.					N.A. 30	N.A. 30		N.A. 29	N.A. 29	N.A. 29	N.A. 28	N.A. 28	N.A. 28	N.A. 28	N.A. 27	N.A. 27	N.A. 27	N.A. 27	N.A. 26	- 30	- 26	- 28							
			SA/ S IL/K/ II IN/O II	ICS-105 IC	Fine F	31 mm 32	3.7-4.5 3.1		30 22861 N.		22861 N.	23143 N.	23143 N.	D	23058 N.	23115 N.	23115 N.	23171 N.	23227 N.	23424 N.	23424 N.	23340 N.	23340 N.	23340 N.	23340 N.	23143 N.	22974 N.	22974 N	22974 N.	22805 N	22805 N	22665 N	23424	22665	23091	
			S M/M(P) TL TT	ICS-105 IC	Fine F	31 mm 31	3.7-4.5 3.7				22 7772	23058 233	23058 23.	1	22974 230	23030 23.	23030 23.	23086 23.	23143 232	23340 234	23340 234	23255 233	23255 233	23255 233	23255 233	23058 23	22890 22	22890 22	22890 22	22721 228	22721 228	22580 220	23340 234	22580 220	23007 23	
			SA/TL/ M/ K/O M/	ICS-105 IC	Fine F	30 mm 31	3.7-4.5 3.7		29 30 22496 22777		22496 227	_		Е	22693 229	22749 230	22749 230	22805 230	22861 23.	23058 233	23058 233	22974 23;	22974 23;	22974 23.	22974 23;	22833 23(22637 228	22637 228	22721 228	22496 22	22496 22	22355 22	23058 233	22355 22	22743 23	
			M/M(P) SA,	ICS-105 ICS	Fine F	30 mm 30	3.74.5 3.7		29 25 22355 224		22355 224	22637 22777	22637 22777		22552 226	22608 227	22608 227	22665 228	22721 228	22918 230	22918 230	22833 229	22833 229	22833 229	22833 229	22693 228	22496 220	22496 220	22580 227	22355 224	22355 224	22215 223	22918 230	22215 223	22602 22	
			GUJ M/	ICS-105 ICS	Fine Fi	29 mm 30	3.74.5 3.7										21934 226	21990 226	22074 227	22158 229	22158 229	22074 228	22074 228	22074 228		21934 226	21652 224	21652 224	21709 225	21484 223	21484 223	21343 222	22158 229			e e
			SA/ TL/K G	ICS-105 ICS	Fine Fi	29 mm 291	3.7-4.5 3.7		7		49 21652	30 21934	30 21934	Η	22130 21877	87 21877									27 22074	22215 219	21934 216			21709 214	21709 214	21568 213	22412 221	21568 21343	22083 218	Vaшa р
				ICS-105 ICS					2		93 21849	74 22130	74 22130	_		30 22187	30 22187	87 22243	71 22327	55 22412	55 22412	71 22327	71 22327	71 22327	71 22327			21 21877	21 21877						26 220	Not A
TES			L) M/M(P)		ne Fine	nm 29 mm	4.5 3.7-4.5		s 28 09 21793		43 21793	65 22074	65 22074	0	24 22074	24 22130	24 22130	81 22187	65 22271	49 22355	49 22355	49 22271	49 22271	49 22271	49 22271	65 22158	15 21877	15 21821	15 21821	46 21652	59 21652	46 21512	49 22355	46 21512	95 22026	\ \
UPCOUNTRY SPOT RATES	77	٥.	JJ R(L)	105 ICS-105	e Fine	ım 29 mm	4.5 3.7-4.5		20809	20528	20443	20865	20865		20724	20724	20724	20781	20865	20949	20949	20949	20949	20949	20949	20865	20415	20415	20415	20246	20359	90 20246	90 20949	90 20246	90 20695	A = Average N.A. = Not Available
SPO	February 2022	2021-22 Crop	/ K GUJ	105 ICS-105	e Fine	ım 28 mm	4.5 3.7-4.5		, 27	1	•	'	•	D	'	'	'	'	•	'	'	1	'	•	'	'	'	'	'	'	'	06 21090	06 21090	06 21090	06 21090	= Avei
TRY	ebrua	2021-2	(P) SA/ TL/K	.05 ICS-105	e Fine	m 28 mm	1.5 3.7-4.5		27	'	•	'	•		'	'	'	'	•	•	'	1	'	•	•	'	'	'	'	•	'	49 21006	49 21006	49 21006	• •	
OUN			/ M/M(P)	05 ICS-105	e Fine	m 28 mm	.9 3.7-4.5		27 27	- 6(- 4:	- 91	- 91	Ø	- 00	.4	. 1	- 72	52 -	- 6(- 6(- 6(- 6(- 60	- 6(- 89		<u>ц</u>	. 4		- 4	37 20949	9 20949	24 20949	54 20949	$\Gamma = \Gamma O M e S t$
UPC			")/ P/H/ L R(U)	05 ICS-105	Fine	m 28 mm	9 3.5-4.9		27 21006	20809	20724	21146	21146		21090	21174	21231	21427	21652	21709	21709	21709	21709	21709	21709	21568	20921	20921	21034	20921	20977	34 20837	34 21709	34 20724		
			% M/M(P)/ SA/TL	35 ICS-105	Fine	n 27 mm	4 3.5-4.9	(6)	26	'	•	•	•		'	'	'	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22 19684	2 19684	2 19684	22 19684	Ignest
			SA/ TL/G	JE ICS-105	Fine	n 27 mm	9 3.0-3.4	4%	25 4 -	· ∞		ا د	5	Η	2 -			- 2	2 -	- 6	- 6	- 6	- 6	- 6	- 6	· ∞	· ∞	- 9	- 9	· •	ري ا	3 19122	9 19122	3 19122		H = H1gh0
)/ P/H/	6 ICS-105	Fine	n 27 mm	4 3.5-4.9	4%	26 20724	20528	20443	20865	20865		20752	20837	20837	20977	21202	21259	21259	21259	21259	21259	21259	21118	20668	20556	20556	20387	20443	9 20303	9 21259	9 20303	208	
			M/M(P)/ SA/TL	2 ICS-105	Fine	n 26 mm	9 3.0-3.4		25 7	- 0	- 9	ا «د	, &	0	1 .	- 9	- 0	- 6	- 4	- 0	- 0	- 0	- 0	- 0	- 0	- 6	- 6			8	4	4 18559	0 18559	6 18559	6 18559	
			P/H/ (%) R(U) (SG)	4 ICS-202	Fine	1 27 mm	3.5-4.9		2 20387		4 20106	1 20528	1 20528		2 20471	2 20556	6 20640	3 20809	7 21034	4 21090	4 21090	0 21090	0 21090	0 21090	0 21090	5 20949	3 20499	3 20387	3 20387	2 20218	2 20274	0 20134	4 21090	2 20106	5 20636	
			M/M(P)	3 ICS-104	Fine	. 23 mm	4.5-7.0	4%	22 18362	18643	18784	18981	18981	Z	19122	19262	19346	19403	19487	19684	19684	19600	19600	19600	19600	19515	19403	19403	19403	19262	19262	18700	19684	18362	19265	
			KAR	2 ICS-103	Fine	23 mm	4.0-5.5	4	21	1	•	1	•		'	'	'	•	•	•	•	•	-	-	-	- 0	- 6		3				·		0	
			GUJ	ICS-102	Fine	22 mm	4.0-6.0		20 - 2	10	10				٠				- (- 2	2 12654	2 12654	2 12654	9 12570	3 12429	7 12373	7 12373	7 12232	7 12092	7 10967	5 12654	7 10967	9 12300	
			P/H/R (SG)	ICS-201	Fine	Below 22 mm	5.0-7.0		15 7 15325	7 15325	7 15325	7 15466	7 15466		5 15353	9 15438	9 15438	7 15466	2 15550	5 15635	7 15916	3 15832	3 15832	3 15832	3 15832	3 15719	7 15438	7 15297	7 15297	5 15157	5 15157	5 15157	7 15916	5 15157	9 15489	
			P/H/R	ICS-101	Fine	Below 22 mm	5.0-7.0		15 15157	15157	15157	15297	15297		15185	15269	15269	15297	15382	15466	15747	15663	15663	15663	15663	15578	15297	15157	15157	15016	15016	15016	15747	15016	15329	
			Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength/GPT 1	2	3	4	2	7	%	6	10	11	12	14	15	16	17	18	19	21	22	23	24	25	26	28	Н	Г	A	

8 • 1st March, 2022 COTTON STATISTICS & NEWS

					UPCOU	NTRY SP	OT RAT	ES				(R	s./Qtl)
	Standard	d Descrip	tions v		ic Grade &				ot Pato	(Lincous	ntry) 20:		
	in Millin			Upper H (A) (a)	Half Mean (4)]	Ü		- St	ot Kate	` -	ry 2022	20-21 CI	ор
Sr. No	. Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength /GPT	21st	22nd	23rd	24th	25th	26th
1	P/H/R	ICS-101	Fine	Below 22mm	5.0 - 7.0	4%	15	15578 (55400)	15297 (55400)	15157 (53900)	15157 (53900)	15016 (53400)	15016 (53400)
2	P/H/R (SG)	ICS-201	Fine	Below 22mm	5.0 – 7.0	4.5%	15	15719 (55900)	15438 (54900)	15297 (54400)	15297 (54400)	15157 (53900)	15157 (53900)
3	GUJ	ICS-102	Fine	22mm	4.0 - 6.0	13%	20	12570 (44700)	12429 (44200)	12373 (44000)	12373 (44000)	12232 (43500)	12092 (43000)
4	KAR	ICS-103	Fine		4.0 - 5.5	4.5%	21	- -	- -	- -	- -	- -	- -
5	M/M (P)	ICS-104	Fine	23mm	4.5 – 7.0	4%	22	19515 (69400)	19403 (69000)	19403 (69000)	19403 (69000)	19262 (68500)	19262 (68500)
6	P/H/R (U) (SG)				3.5 - 4.9	4.5%	26	20949 (74500)	20499 (72900)	20387 (72500)	20387 (72500)	20218 (71900)	20274 (72100)
	M/M(P)/ SA/TL	ICS-105	Fine		3.0 - 3.4	4%	25	-	-	-	-	-	-
8	P/H/R(U)	ICS-105	Fine		3.5 - 4.9	4%	26	21118 (75100)	20668 (73500)	20556 (73100)	20556 (73100)	20387 (72500)	20443 (72700)
9	M/M(P)/ SA/TL/G	ICS-105	Fine		3.0 - 3.4	4%	25	- -	- -	- -	- -	-	- -
	M/M(P)/ SA/TL	ICS-105	Fine		3.5 – 4.9	3.5%	26	- -	-	-	-	-	- -
	P/H/R(U)	ICS-105	Fine		3.5 – 4.9	4%	27	21568 (76700)	20921 (74400)	20921 (74400)	21034 (74800)	20921 (74400)	20977 (74600)
	M/M(P)	ICS-105	Fine		3.7 - 4.5	3.5%	27	- -	-	-	-	-	-
	SA/TL/K	ICS-105	Fine		3.7 - 4.5	3.5%	27	- -	- -	- -	- -	-	-
	GUJ	ICS-105	Fine		3.7 - 4.5	3%	27	- -	-	-	-	-	-
	R(L)	ICS-105	Fine		3.7 – 4.5	3.5%	28	20865 (74200)	20415 (72600)	20415 (72600)	20415 (72600)	20246 (72000)	20359 (72400)
	M/M(P)	ICS-105			3.7 - 4.5	3.5%	28	_ `			21821 (77600)		
	SA/TL/K	ICS-105			3.7 - 4.5	3%	28	22215 (79000)	21934 (78000)	21877 (77800)	21877 (77800)	21709 (77200)	21709 (77200)
	GUJ	ICS-105			3.7 - 4.5	3%	28	21934 (78000)	21652 (77000)	21652 (77000)	21709 (77200)	21484 (76400)	21484 (76400)
	M/M(P)	ICS-105				3.5%	29	22693 (80700)	22496 (80000)	22496 (80000)	22580 (80300)	22355 (79500)	22355 (79500)
		ICS-105				3%	29	22833 (81200)	22637 (80500)	22637 (80500)	22721 (80800)	22496 (80000)	22496 (80000)
	M/M(P)	ICS-105				3%	30	23058 (82000)	22890 (81400)	22890 (81400)	22890 (81400)	22721 (80800)	22721 (80800)
	SA/TL/ K / TN/O	ICS-105				3%	30	23143 (82300)	22974 (81700)	22974 (81700)	. ,	22805 (81100)	22805 (81100)
23	SA/TL/K/ TN/O	ICS-106	Fine	32mm	3.5 - 4.2	3%	31	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)
	M/M(P)	ICS-107				4%	33	26995 (96000)	26714 (95000)	26714 (95000)	26714 (95000)	26573 (94500)	26433 (94000)
25	K/TN	ICS-107	Fine	34mm	2.8 - 3.7	3.5%	34	28964 (103000)	28401 (101000)	,	,	28120 (100000)	28120 (100000)
26	M/M(P)	ICS-107	Fine	35mm	2.8 - 3.7	4%	35	27558 (98000)	27276 (97000)	27276 (97000)	27276 (97000)	27136 (96500)	27276 (97000)
27	K/TN	ICS-107	Fine	35mm	2.8 - 3.7	3.5%	35	30369 (108000)	29807 (106000)	29807 (106000)	29807 (106000)	29526 (105000)	29245 (104000)

(Note: Figures in bracket indicate prices in Rs./Candy)