

Cotton

of India

COTTON STATISTICS & NE Association Edited & Published by Amar Singh

2025-26 • No. 8 • 20th May, 2025 Published every Tuesday

Cotton Exchange Building, 2nd Floor, Cotton Green, Mumbai - 400 033 Telephone: 8657442944/45/46/47/48 Email: cai@caionline.in www.caionline.in

Genome Editing Technology and Future Growth of Cotton in India

C.D. Mayee, Ph.D. and AvH fellow from Germany is former Director of ICAR-CICR and retired as Chairman

ICAR-Agricultural Scientists Recruitment New Delhi. Board, Currently he is engaged in technology transfer program of Agrovision Foundation, Nagpur. Mayee considers his aim of improving the cotton farmers

wellbeing, as a social call and wishes not to

Dr. C D. Mayee President Indian Society for Cotton Improvement (ISCI), Mumbai and South Asia Biotechnology Centre (SABC), New Delhi

retire for this purpose even at the age of 80. He has organized series of demos on pest management, nutrient management, HDPS and such technologies in the last 10 years as he believes in seeing is believing.

Recently, we published an article "Policy to Plate: What Genome Edited - Rice means for India's Food Future" in Business Standard on 11th May, 2025. This is considered a milestone in the technology adoption particularly when India has shown the overtly cautious approach to genetically modified (GM) crops. Since the release of Bt cotton in 2002, agricultural biotechnology has faced multiple hurdles, including a moratorium on Bt brinjal in 2010, delays in approving GM mustard, and stalled next-generation Bt/Ht cotton technologies.

Dr Bhagirath Choudhary is founder director of South Asia Biotechnology Centre (SABC) - a DSIR recognized Scientific and Industrial Research

Organization (SIRO) based at Jodhpur, Rajasthan. He has been associated as a board member of the Agricultural & Processed Food Export Development Authority (APEDA) and also serving as a member Regional Advisory of Committee of NABARD and member of the Task Force Committee of the Spices Board of India of the Ministry of Commerce &

Dr Bhagirath Choudhary Founder Director, South Asia Biotechnology Centre (SABC), Jodhpur

Industry. He is also associated as board member AFC India Ltd, Mumbai. He has dedicated his two and half decades of professional agriculture career working with smallholder growers and has contributed enormously to the transfer of bio-innovations from the lab to the land for the growth prospects for the bioeconomy of India.

These were compounded by policy bottlenecks like the requirement of the state-level noobjection certificate (NOC) for field trials, high testing costs, and a non-functional event-based approval mechanism (EABM). Adding to the challenges is the decade-long enforcement of the Cotton Seeds Price (Control) Order, 2015, which mandates a fixed maximum retail price (MRP) for Bt cotton seeds, which further discouraged private investment and biotech-based innovation in the sector. Against this backdrop, the approval of two genome-edited rice varieties namely DRR Dhan 100 (Kamla) and Pusa Rice DST 1 marks a strategic and science-backed policy shift aligned with global best practices.

Is Genome Editing Different from Genetic Modification?

Unlike genetically modified organisms (GMOs), the new rice lines contain no foreign DNA. Instead, scientists used CRISPR-Cas9 system under the SDN-1 approach to make precise changes in native genes, enabling traits such as higher yield and drought and salinity tolerance without the regulatory complications of genetic modification or transgenics. Although transgenes were used in the development phase, the final products are free from foreign DNA. This development underscores the rising importance of CRISPR-based precision breeding in modern agriculture. Genome editing, particularly through the SDN-1 & SDN-2 pathway, allows for targeted, predictable changes in an organism's DNA without introducing any foreign genetic material is a key distinction that has opened doors to regulatory flexibility and public acceptance. In a landmark scientific breakthrough in agriculture, the Government of India has officially released the world's first two genome edited rice varieties developed using the CRISPR-Cas9 technique, which marks a transformative step in its policy on agriculture biotechnology. The two rice varieties such as DRR Dhan 100 (Kamla) developed by ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, and Pusa Rice DST 1 by the ICAR-Indian Agricultural Research Institute (IARI), New Delhi - represent India's first genome-edited crops to receive public approval. Under the current threat of climate change these varieties of rice are tolerant to several stresses like water, salt, and heat and under adverse conditions produce better grain yield.

Can Genome Editing Compliment Genetic Modification Bt Technology in Cotton?

The genome editing technology like CRISPR-Cas can significantly complement genetically modified (GM) Bt cotton technology in India by offering a more precise and flexible approach to trait improvement. The genetically modified double gene (Cry1Ac and Cry2Ab genes) Bt cotton has played a pivotal role in controlling multiple cotton bollworm species, including Helicoverpa armigera, Erias vitella and Pectinophora gossypiella (pink bollworm) and improving yields since its approval in 2002. However, over the period of the last 24 years, there are complex new challenges emerging in cotton production in India such as resistance development in pests notably for pink bollworm, stressors and soil-borne climate-induced diseases that necessitates more nuanced genetic solutions. Since Bt cotton has been accepted widely by farmers and consumers, the concerns related to genetic modification in cotton is no longer a challenge. Therefore, the applications of precise genome editing using CRISPR-Cas system including both transgene free SDN-1 and SDN-2 modification and those with transgene SDN-3 method can be expeditated. The CRISPR-Cas system allows our cotton scientists to edit specific genes associated with traits like pest and disease resistance, drought and salinity tolerance, and fibre quality, with or without introducing foreign gene(s). This precision reduces regulatory hurdles and further improves public and policy acceptance; positioning genome editing as a next-generation tool to fortify and diversify the genetic base of India's cotton crop.

Overall, India's regulatory and public landscape has generally accepted Bt cotton as evidenced by its wides pread adoption as over 95% of 12 million hectares of cotton cultivation. This acceptance creates a favourable environment for integrating genome editing tools like CRISPR-Cas into mainstream breeding programs led by ICAR-Central Institute of Cotton Research (CICR), Nagpur. Complementing, traditional GM approaches that involve transgenes, CRISPR can create non-transgenic edits such as gene knockouts or promoter modifications that mimic natural mutations, potentially easing consumer concerns and aligning with India's evolving regulatory stance on genome-edited crops. Together, Bt and CRISPR technologies can offer a synergistic path forward to Bt for broad-spectrum insect control and CRISPR-Cas can address localized, complex challenges such as pest resistance management, disease tolerance, weed management, abiotic stress adaptation and hybrid seed production. The combined technological breakthrough can help in increasing cotton production from 29.4 million bales in 2024-25 to the target of 45 million bales

in 2029-30 and ensure long-term sustainability and resilience of India's cotton sector.

Implications of CRISPR-Cas Genome Editing Technology on Cotton

Indian cotton yield has been stagnant since 2013-14 plagued by a relentless series of one of other challenges. It all started with the outbreak of the dreaded pest pink bollworm (PBW), which initially spread in Central cottongrowing states and caused heavy damage in terms of substantial reductions in yield and a decline in the quality of the harvested cotton. By 2021, the PBW had engulfed North India cotton areas which was already suffering from the widespread infestation of whitefly infestations. The combined onslaught of these pests dealt a heavy blow to cotton yields. The situation reached an alarming level last year. In Punjab, a state that a decade ago boasted nearly 7-8 lakh hectares of cotton cultivation, the area under cotton reduced drastically to a mere 1 lakh hectares. Consequently, national cotton output nosedived to the lowest in the post-Bt era of 29.4 million bales of 170 kg.

This dramatic decline has forced a significant shift in India's cotton trade dynamics. Once a prominent cotton exporting nation, India has for the first time, found itself importing cotton to meet the demands of its textile mills. To overcome the losses, cotton farmers and the textile industry have been demanding legal permission for allowing the cultivation of next generation herbicide tolerant (Bt/HT) and pink bollworm resistance cotton. A primary concern is the escalating cost of labour in cotton cultivation, which has now reached an unprecedented 45% of total input costs. Compounding this is the acute unavailability of labour when it is most critically needed for manual weeding. This desperation has fuelled a rampant illegal trade in Bt/HT cotton seeds, as farmers seek solutions to mitigate their losses and reduce dependency on manual labour. Beyond herbicide tolerance, there are pressing issues related to effective pink bollworm management and the need for drought-tolerant cotton varieties.

The recent approval of genome editing rice technology by the Government of India has brightened the ray of hope. The researchers believe that the problems in cotton production such as white fly, cotton leaf curl virus, tobacco streak virus, boll rot, wilting, pink bollworm, water stress and even herbicide tolerance can be solved through CRISPR-Cas technology.

Of course, cotton scientists need to make a coarse correction in their research agenda along with long-term investment from the Govt of India to find out where the technology can come to the rescue and for which serious cotton problems like what rice scientists have done to improve the old varieties of rice through CRISPR-Cas technology. By applying a similar, streamlined regulatory approach to SDN1 and SDN2 genome edited plants and effectively using SDN-3 technology, cotton scientists can avoid the protracted, bureaucratic hurdles that have historically delayed the commercialization of GM crops. The streamlined framework eliminates the need for cumbersome state-level NOCs, enabling faster and more predictable crop development.

Prioritizing Genome Editing for Cotton Improvement

Globally, CRISPR-Cas genome editing has made significant progress in cotton (*Gossypium spp.*) improvement in recent years, particularly since 2015. Cotton researchers have leveraged the technology to address a variety of challenges in cotton production including fibre quality, yield, pest and disease resistance, abiotic stress tolerance, hybrid seed production and more efficient molecular breeding. At the same time, India has made notable strides in leveraging advanced genome editing tools like CRISPR-Cas9 to improve cotton which focuses on enhancing traits such as fibre quality, stress resistance, disease tolerance and yield improvement.

The Central Institute for Cotton Research (CICR), a premier institute under the Indian Council of Agricultural Research (ICAR) is actively involved in cotton research applying CRIPR-Cas to target the gene associated with modifying genes to enhance fibre length and strength, improve tolerance to drought, salinity, and temperature extremes and targeting genes to confer resistance against cotton pathogens such as boll rot. More specifically, the Central Institute for Cotton Research (CICR) in India has been actively engaged in CRISPR-Cas genome editing research to enhance various traits in cotton as summarized in Table 1.

Table 1. Notable Applications of CRISPR-Cas Technology for Improvement of Indian Cotton

Target	Gene(s)	Gene(s) CRISPR Strategy				
Reducing Gossypol Content in Cottonseed	GhDIR5	Knockout of GhDIR5 gene, significant reduction in gossypol content without affecting the plant's defence mechanism	Field-ready lines			
Enhancing Fiber Quality	GhXB38D	Editing GhXB38D to enhance fiber length and quality	Early research			
Engineering Male Sterility for Hybrid Seed Production	Ms5 and Ms6	Knockout of Ms5 and Ms6 genes to induce male sterility and thereby improving efficiency in hybrid seed production.	Early research			
Development of Herbicide-Resistant Cotton	EPSPS	Knockout of EPSPS gene to develop herbicide-resistant cotton varieties, thereby enhancing weed management strategies	Field-ready lines			
Modulating Flowering Time	GhAP1-D3	Editing GhAP1-D3 gene to regulate flowering time in cotton	Early research			
Stress Tolerance	GhPHYA1	Editing GhPHYA1 gene, a targeted mutagenesis to enhance adaptability of cotton varieties to different environmental conditions	Under exploration			

Source: ICAR-CICR Annual Reports, Analysed by South Asia Biotechnology Centre, 2025

The notable applications of CRISPR-Cas technology for the improvement of cotton in India is at a nascent stage. Moreover, the nature of polyploid genome (AADD) of cotton complicates gene editing as it requires editing multiple homeologs resulting in different genetic outcomes compared to pairing of true homologous chromosomes. However, the cotton researchers must also overcome the bottleneck and need to develop a robust and efficient cotton transformation system. Another important area that needs a policy paradigm is to develop the regulatory system of stacking multiple genes and traits, combining already approved Bt cotton with potential genome edited cotton to ensure durable and long-lasting resistance to pests and tolerance to diseases under field conditions.

Finally, India is at the brink of the next generation cotton revolution with the area-wide deployment of the high-density planting system (HDPS) involving stacked trait Bt/HT hybrid cotton seeds. The seed industry has a capacity to produce around 50-60 million packets of hybrid seeds each containing 450 gms of Bt seed with cytoplasmic male sterility (CMS) based system which requires hand emasculation and pollination. As India increases its adoption of HDPS hybrids, it needs to transform the method of hybridization including developing a more efficient genetic male sterility (GMS) system. To accelerate the development of high-yielding hybrid production, CRISPR-Cas can be leveraged to streamline and genetically control hybrid cotton seed production by engineering male sterility in cotton by knocking out genes like GhEMS1, GhMYB80, GhMs1 & GhTPD1, which are essential for anther or pollen development in cotton, creating genetically male sterile (GMS) lines with no functional pollen, so they can only serve as female parents in efficient hybrid seed production without requiring hand emasculation. Moreover, cotton researchers are now working on developing maintainer and improved restorer lines and testing field performance of CRISPRbased hybrids, showing advantages over conventional hybrid cotton production (Table 2).

Table 2. Advantages of CRISPR-based OverConventional Hybrid Cotton Production

Conventional Method	CRISPR-Based Method
Labor intensive hand emasculation	Genetic male sterility (GMS) eliminates manual emasculation
Low seed purity risk	High genetic control ensures purity
Costly and time- consuming	Scalable, efficient and precise
Limited by natural CMS systems	Expandable to multiple gene targets and systems

Source: Analysed by South Asia Biotechnology Centre, 2025

backdrop, Against this the Indian government's recent move to permit genome editing technology in rice offers a significant ray of hope for other crop such as cotton. This cuttingedge scientific approach holds the potential to address several of the critical problems plaguing Indian cotton. As cotton scientists, we believe that genome editing can be harnessed to develop cotton hybrids and varieties resistant to pests and disease, impart tolerance to herbicide and water stress and enhance climate resilience. With this, India is strongly positioned to spearhead innovation in genome edited (GEd) and genetically modified (GM) crops and herald a new era of cotton production in the country.

(The views expressed in this column are of the authors and not that of Cotton Association of India)

Important Changes in TDS (Tax Deducted at Source), TCS (Tax Collected at Source) and Remuneration in Partnership Firm

Shri. Ronak Sandip Jain is a Partner in Jain Advocates, Ahmedabad. He is a practicing advocate of indirect taxes upto the appellate level in Gujarat as well as other states of India. He has been on various committees of the Gujarat sales tax bar association: Member of Law Committee (2015-2016), Member of Website Committee (2015-2016) and Member of EDP representation and Website Committee (2016-2017 and 2019-2020); Member of Refresher

Shri. Ronak Jain Partner, Jain Advocates

Course Committee:- The Gujarat Sales Tax Bar Association (2021-2023) and Member of Indirect Tax Task Force:- The Gujarat

Chamber Of Commerce And Industry (2022-2023). He is an accredited GST trainer from the National Academy of Customs, Excise & Narcotics, Faridabad. He has delivered lectures on GST at various trade forums, professional associations and also at departmental outreach programmes.

[1] Deduction On Remuneration Paid To Partners

The limit of deduction available to partnership firms and LLPs for remuneration paid to partners has been enhanced. The calculation limits were revised to make way for higher deductions during tax computation.

The following limits will be applicable to determine the maximum deduction available for the partners' remuneration paid:

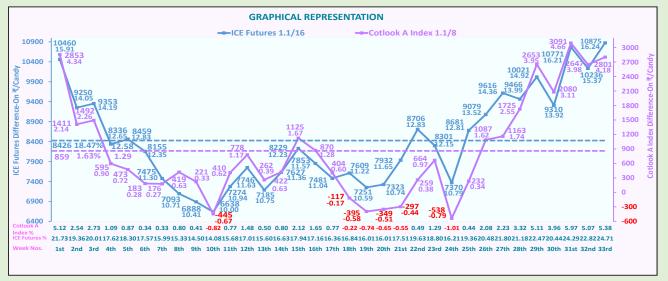
Book Profit	Limit
On the first Rs. 6,00,000 of book profit or loss	Rs. 3,00,000 or 90% of the book profit, whichever is higher
On the remaining balance of book-profit	60% of the book-profit

[2] The following changes will be effective from April 2025 for TCS (Tax Deducted at Source)

Section	Before 1st April 2025	From 1st April 2025
206C(1 G) – Remittance under LRS (Liberalised Remittance Scheme) and overseas program package	7 Lakhs	10 Lakhs
206C(1 G) – Remittance under LRS for education if financed through educational loans	7 Lakhs	Nil (No TCS Applicable)
206C(1H) – Purchase of Goods	50 Lakhs	Nil (No TCS Applicable)

Note: Provisions of other TCS sections remain the same.

[3] Effective from April 2025, the TDS (Tax Deducted at Source) threshold limits for various sections have been increased as follows:


Section	Before 1st April 2025	From 1st April 2025				
193 - Interest on Securities	NIL	10,000				
194A – Interest other than Interest on Securities	 (i) 50,000/- for senior citizens; (ii) 40,000/- in case of others when the payer is the Bank, Co-operative Society and Post Office (iii) 5,000/- in other cases 	 (i) 100,000/- for senior citizens; (ii) 50,000/- in case of others when the payer is the Bank, Co-operative Society and Post Office (iii) 10,000/- in other cases 				
194 – Dividend, for an individual shareholder	5,000	10,000				
194K – Income in respect of units of a mutual fund	5,000	10,000				
194B – Winnings from lottery, crossword puzzle Etc. & 194BB – Winnings from horse race	Aggregate of amounts exceeding 10,000/- during the financial year	10,000/- in respect of a single transaction				
194D – Insurance commission	15,000	20,000				
194G – Income by way of commis- sion, prize etc. on lottery tickets	15,000	20,000				
194H – Commission or brokerage	15,000	20,000				
194I – Rent	2,40,000 (in a financial year)	50,000 per month				
194J – Fee for professional or tech- nical services	30,000	50,000				
194LA – Income by way of en- hanced compensation	2,50,000	5,00,000				
194T- Remuneration, Interest and Commission paid to partners	NIL	20,000				

Note: Provisions of other TDS sections remain the same.

(The views expressed in this column are of the authors and not that of Cotton Association of India)

Basis Comparison of ICS 105 with ICE Futures and Cotlook A Index – 17th May 2025

SEASON 2024-2025 Comparison M/M(P) ICS-105, Grade Fine, Staple 29mm, Mic. 3.7-4.9, Trash 3.5%, Str./GPT 28												
with ICE Futures & Cotlook A Index												
			Indian	ICE Settlement	Difference- ON/OFF ICE Futures		_		Diffe	rence-		
		*CAI		Futures 1.1/16"				Cotlook A	ON/OFF Cotlook A			
Year 2024/2025	1 US \$ = ₹	Rates	Cotton in	Front Mth. Jul.'25			%	Index M-	Inc	dex	%	
		₹/Candy	USc/Ib.	USc/lb.	USc/lb.	₹/Candy		1.1/8"	USc/lb.	₹/Candy		
Α	В	с	D	E	F	G	н	1	1	K	L	
	5	<u> </u>		_ Year Week No-33						Ň		
12 th May	85.38	55000	82.17	66.63	15.54	10402	23.32	78.25	3.92	2624	5.01	
13 th May	85.34	55000	82.20	66.28	15.92	10652	24.02	78.25	3.95	2643	5.05	
14 th May	85.28	54900	82.11	65.48	16.63	11119	25.40	78.00	4.11	2748	5.27	
15 th May	85.55	54900	81.85	65.43	16.42	11013	25.10	77.25	4.60	3085	5.95	
16 th May	85.52	54700	81.58	64.89	16.69	11190	25.72	77.25	4.33	2903	5.61	
Weekly Avg.	85.41	54900	81.98	65.74	16.24	10875	24.71	77.80	4.18	2801	5.38	
, , ,	Weekly Averages											
Wk No-32nd (05.05.25-09.05.25)	84.93	55100	82.76	67.39	15.37	10236	22.82	78.78	3.98	2647	5.07	
Wk No-31st (28.04.25-02.05.25)	84.76	55180	83.04	66.83	16.21	10771	24.29	78.38	4.66	3091	5.97	
Wk No-30th (21.04.25-25.04.25)	85.29	54920	82.13	68.21	13.92	9310	20.44	79.02	3.11	2080	3.96	
Wk No-29th (14.04.25-18.04.25)	85.65	54620	81.34	66.42	14.92	10021	22.47	77.39	3.95	2653	5.11	
Wk No-28th (07.04.25-11.04.25)	86.31	54180	80.07	66.08 May.'25	13.99	9466	21.18	77.52	2.55	1725	3.32	
Wk No-27th (31.03.25-04.04.25)	85.43	53960	80.57	66.21 May.'25	14.36	9616	21.80	78.83	1.74	1163	2.23	
Wk No-26th (24.03.25-28.03.25)	85.68	53440	79.56	66.04 May.'25	13.52	9079	20.48	77.94	1.62	1087	2.08	
Wk No-25th (17.03.25-21.03.25)	86.43	53560	79.04	66.23 May.'25	12.81	8681	19.36	78.70	0.34	232	0.44	
Wk No-24th (10.03.25-14.03.25)	87.16	52860	77.36	66.58 May.'25	10.79	7370	16.21	78.15	-0.79	-538	-1.01	
Wk No-23rd (03.03.25-07.03.25)	87.12	52520	76.89	64.74 May.'25	12.15	8301	18.80	75.92	0.97	664	1.29	
Wk No-22nd (24.02.25-28.02.25)	86.57	53080	78.21	65.38 Mar.'25	12.83	8706	19.63	77.83	0.38	259	0.49	
Wk No-21st (17.02.25-21.02.25)	86.83	53260	78.23	66.58 Mar.'25	11.65	7932	17.51	78.67	-0.44	-297	-0.55	
Wk No-20th (10.02.25-14.02.25)	86.99	53060	77.81	67.07 Mar.'25	10.74	7323	16.01	78.32	-0.51	-349	-0.65	
Wk No-19th (03.02.25-07.02.25)	87.35	52540	76.72	66.14 Mar.'25	10.59	7251	16.01	77.30	-0.58	-395	-0.74	
Wk No-18th (27.01.25-31.01.25)	86.53	52800	77.83	66.61 Mar.'25	11.22	7609	16.84	78.00	-0.17	-117	-0.22	
Wk No-17th (20.01.25-24.01.25)	86.43	53220	78.54	67.50 Mar.'25	11.04	7481	16.36	77.94	0.60	404	0.77	
Wk No-16th (13.01.25-17.01.25)	86.55	53620	79.02	67.45 Mar.'25	11.57	7853	17.16	77.74	1.28	870	1.65	
Wk No-15th (06.01.25-10.01.25)	85.85	54120	80.41	68.19 Mar.'25	12.23	8229	17.94	78.74	1.67	1125	2.12	
Wk No-14th (30.12.24-03.01.25)	85.67	53500	79.66	68.30 Mar.'25	11.36	7627	16.63	79.03	0.63	422	0.80	
Wk No-13th (23.12.24-27.12.24)	85.27	53260	79.67	68.92 Mar.'25	10.75	7185	15.60	79.28	0.39	262	0.50	
Wk No-12th (16.12.24-20.12.24)	84.96	53280	79.99	68.36 Mar.'25	11.63	7746	17.01	78.82	1.17	778	1.48	
Wk No-11th (09.12.24-13.12.24)	84.82	53680	80.73	69.79 Mar.'25	10.94	7274	15.68	80.11	0.62	410	0.77	
Wk No-10th (02.12.24-06.12.24)	84.71	53820	81.04	71.04 Mar.'25	10.00	6638	14.08	81.71	-0.67	-445	-0.82	
Wk No-09th (25.11.24-29.11.24)	84.41	54380	82.17	71.77 Mar.'25	10.41	6888	14.50	81.84	0.33	221	0.41	
Wk No-08th (18.11.24-22.11.24)	84.44	53400	80.66	69.95 Mar.'25	10.71	7093	15.33	80.03	0.63	419	0.80	
Wk No-07th (11.11.24-15.11.24)	84.40	54300	82.07	70.77 Mar.'25	11.30	7475	15.99	81.80	0.27	176	0.33	
Wk No-06th (04.11.24-08.11.24)	84.24	54600	82.67	70.32 Dec.'24	12.35	8155	17.57	82.39	0.28	183	0.34	
Wk No-05th (28.10.24-01.11.24)	84.08	54680	82.95	70.12 Dec.'24	12.83	8459	18.30	82.23	0.72	473	0.87	
Wk No-04th (21.10.24-25.10.24)	84.07	55660	84.44	71.80 Dec.'24	12.65	8336	17.62	83.54	0.90	595	1.09	
Wk No-03rd (14-10.24-18.10.24)	84.06	56100	85.12	70.93 Dec.'24	14.19	9353	20.01	82.86	2.26	1492	2.73	
Wk No-02nd (07.10.24-11.10.24)	83.98	57040	86.63	72.58 Dec.'24	14.05	9250	19.36	84.49	2.14	1411	2.54	
Wk No-01st (30.09.24-04.10.24)	83.86	58600	89.13	73.22 Dec.'24	15.91	10460	21.73	84.79	4.34	2853	5.12	
Total Avg.	85.46	54159	80.86	68.28	12.58	8426	18.47	79.57	1.29	859	1.63	

Note:- Weeks taken as per Cotton Year (October To September). *CAI ICS 105 rates are Ex-Gin Mid. 1-5/32"

Values in BLUE Indicates Previous Close Considered due to HOLIDAY's Resp.

12th May 2025- RBI & Domestic market remain CLOSED due to Buddha Purnima.

				l	UPCOUI	NTRY SP	OT RAT	ES				(R	ls./Qtl)
Sta	Standard Descriptions with Basic Grade & Staple in Millimeters based on Upper Half Mean Length As per CAI By-laws							Spot Rate (Upcountry) 2024-25 Crop				op	
	on Upp		ean Le	ngth As	per CAI E		Ci 1			May	7 2025		1
Sr. No	. Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength /GPT	12th	13th	14th	15th	16th	17th
1	P/H/R	ICS-101	Fine	Below 22mm	5.0 - 7.0	4%	15	13216 (47000)	13216 (47000)	13216 (47000)	13132 (46700)	13132 (46700)	13132 (46700)
2	GUJ	ICS-102	Fine		4.0 - 6.0	13%	20	10320	10320	10320	10292	10208	10208
		105-102	THE	22111111	4.0 - 0.0	1370	20	(36700)	(36700)	(36700)	(36600)	(36300)	(36300)
3	M/M (P)	ICS-104	Fine	23mm	4.5 - 7.0	4%	22	13919	13919	14060	14060	13919	13919
4	P/H/R (U)	ICS-202	Fine	27mm	3.5 - 4.9	4.5%	26	(49500) 15129	(49500) 15100	(50000) 15100	(50000) 14988	(49500) 14988	(49500) 14988
		(SG)						(53800)	(53700)	(53700)	(53300)	(53300)	(53300)
5	P/H/R(U)	ICS-105	Fine	27mm	3.5 - 4.9	4%	26	15297	15269	15269	15157	15157	15157
								(54400)	(54300)	(54300)	(53900)	(53900)	(53900)
6	M/M(P)/ SA/TL/G	ICS-105	Fine	27mm	3.0 - 3.4	4%	25	13357 (47500)	13357 (47500)	13357 (47500)	13357 (47500)	13357 (47500)	13357 (47500)
7	M/M(P)/	ICS-105	Fine	27mm	3.5 - 4.9	3.5%	26	14510	14510	14566	14566	14566	14566
,	SA/TL	100 100	THE	27 11111	5.5 1.9	0.070	20	(51600)	(51600)	(51800)	(51800)	(51800)	(51800)
8	P/H/R(U)	ICS-105	Fine	28mm	3.5 - 4.9	4%	27	15550	15522	15522	15494	15494	15494
								(55300)	(55200)	(55200)	(55100)	(55100)	(55100)
9	M/M(P)	ICS-105	Fine	28mm	3.7 - 4.9	3.5%	27	14932	14932	14904	14904	14847	14819
								(53100)	(53100)	(53000)	(53000)	(52800)	(52700)
10	SA/TL/K	ICS-105	Fine	28mm	3.7 - 4.9	3.5%	27	14904	14875	14847	14875	14819	14791
								(53000)	(52900)	(52800)	(52900)	(52700)	(52600)
11	GUJ	ICS-105	Fine	28mm	3.7 - 4.9	3%	27	14932	14904	14904	14875	14847	14847
								(53100)	(53000)	(53000)	(52900)	(52800)	(52800)
12	R(L)	ICS-105	Fine	28mm	3.7 - 4.9	3.5%	27	15494 (55100)	15494 (55100)	15494 (55100)	15438 (54900)	15410 (54800)	15382 (54700)
12	P(I)	ICS-105	Fine	20mm	3.7 - 4.9	3.5%	28	15607	15607	15607	15550	15522	15494
13	R(L)	103-105	Fille	2911111	5.7 - 4.9	3.5 /0	20	(55500)	(55500)	(55500)	(55300)	(55200)	(55100)
14	M/M(P)	ICS-105	Fine	29mm	3.7 - 4.9	3.5%	28	15466	15466	15438	15438	15382	15353
								(55000)	(55000)	(54900)	(54900)	(54700)	(54600)
15	SA/TL/K	ICS-105	Fine	29mm	3.7 - 4.9	3%	28	15466	15438	15410	15438	15382	15353
								(55000)	```	(54800)	(54900)	````	(54600)
16	GUJ	ICS-105	Fine	29mm	3.7 – 4.9	3%	28	15325 (54500)	15297 (54400)	15297 (54400)	15269 (54300)	15241 (54200)	15241 (54200)
17	M/M(P)	ICS-105	Fine	30mm	37-49	3%	29	15747	15747	15719	15719	15663	15663
17	111/111(1)	100 100	THE	5011111	5.7 1.9	570	2)	(56000)	(56000)	(55900)	(55900)	(55700)	(55700)
18	SA/TL/K/O	ICS-105	Fine	30mm	3.7 - 4.9	3%	29	15747	15691	15663	15663	15607	15607
								(56000)	(55800)	(55700)	(55700)	(55500)	(55500)
19	M/M(P)	ICS-105	Fine	31mm	3.7 - 4.9	3%	30	16028	16028	16028	16028	15972	15972
								(57000)	(57000)	(57000)	(57000)	(56800)	(56800)
20	SA/TL/K/ TN/O	ICS-105	Fine	31mm	3.7 - 4.9	3%	30	16028 (57000)	16028 (57000)	16028 (57000)	16028 (57000)	15972 (56800)	15972 (56800)
21	SA/TL/K/	ICS-106	Fine	32mm	3.5 - 4.9	3%	31	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	TN/O	100 105	Е.	24	28.27	4.0/	00	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)
22	M/M(P)	ICS-107	Fine	34mm	2.8 - 3.7	4%	33	21090 (75000)	21090 (75000)	21090 (75000)	20949 (74500)	20949 (74500)	20949 (74500)
23	K/TN	ICS-107	Fine	34mm	2.8 - 3.7	3.5%	34	22074	22074	22074	22074	22074	22074
	,							(78500)	(78500)	(78500)	(78500)	(78500)	(78500)
24	M/M(P)	ICS-107	Fine	35mm	2.8 - 3.7	4%	35	21934	21934	21934	21793	21793	21793
								(78000)	(78000)	(78000)	(77500)	(77500)	(77500)
25	K/TN	ICS-107	Fine	35mm	2.8 - 3.7	3.5%	35	23058	23058	23058	23058	23058	23058
								(82000)	(82000)	(82000)	(82000)	(82000)	(82000)

Note: (Figures in bracket indicate prices in Rs./Candy)