

Cotton

Association

of India

COTTON STATISTICS & NI

2024-25 • No. 27 • 1st October, 2024 Published every Tuesday

Cotton Exchange Building, 2nd Floor, Cotton Green, Mumbai - 400 033 Telephone: 8657442944/45/46/47/48 Email: cai@caionline.in www.caionline.in

Technical Analysis

Price Outlook for Gujarat-ICS-105, 29mm and ICE Cotton Futures for the Period 1st October to 5th November 2024

Shri. Gnanasekar Thiagarajan is currently the head of Commtrendz Research, an organization which,

specializes in commodity research and advisory to market participants in India and overseas. He works closely with mostly Agri-Business, base metals and precious metals business corporates in India and across the globe helping them in managing their commodity and currency price risk. Further to his completing a post graduate in software engineering, he did a long stint with DowJones, promoters of "The Wall Street Journal" and had the Shri. Gnanasekar Thiagarajan opportunity of closely working with

some of the legends in Technical Analysis history in the U.S.

His columns in The Hindu Business Line have won accolades in the international markets. He also writes a fortnightly column on a blog site for The Economic Times on Global commodities and Forex markets. He

Domestic Markets

• The domestic cotton prices were still under pressure as poor demand weighed amid the onset of the arrival season. Spinning mills are buying cotton cautiously due to uncertainties in purchasing from the downstream industry. However, the higher MSP (minimum support price) for the upcoming marketing season, which began on Oct 1, may provide support for cotton prices.

is a part an elite team of experts for moneycontrol.com in providing market insights. He was awarded "The


> Best Market Analyst", for the category-Commodity markets- Bullion, by then President of India, Mr. Pranab Mukherji.

> He is a consultant and advisory board member for leading corporates and commodity exchanges in India and overseas. He is regularly invited by television channels including CNBC and ET NOW and Newswires like

Reuters and Bloomberg, to opine on the commodity and forex markets. He has conducted training sessions for

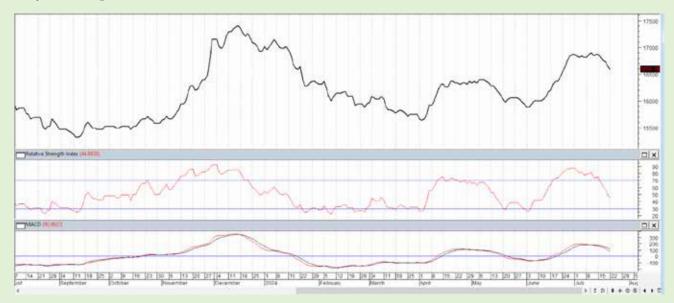
markets participants at BSE, NSE, MCX and IIM Bangalore and conducted many internal workshops for corporates exposed to commodity price risk. He has also done several training sessions for investors

all over the country and is also a regular speaker at various conferences in India and abroad. • SW monsoon has drawn an

Director, Commtrendz Research

2 • 1st October, 2024 COTTON STATISTICS & NEWS

withdrawal continues. Monsoon was 108% of long period average, just above IMD's first forecast at 106%.


• Cotton yarn prices in the South experienced weak sentiments due to slow demand from the fabric industry. Trade sources from Maharashtra's power loom hubs indicated that they are facing sluggish demand for fabric from the garment industry. Consequently, cotton yarn prices for a few varieties and counts eased by ₹2 per kg. However, domestic demand may improve further after Pitra Paksh (the Hindu auspicious fortnight during which new purchases are forbidden), which ends shortly.

International Markets

- ICE cotton futures edged higher, helped by buyback phenomenon as traders covered short positions ahead of a weekly federal export sales report last Thursday. Oil prices climbed more than 3% as Israel and the U.S. vowed retribution over Iran's biggest ever direct attack on its regional adversary, firing more than 180 ballistic missiles. Higher crude prices make polyester, an alternative to cotton, more expensive.
- As historic floodwaters unleashed by Hurricane Helene recede across the US Southeast, the region faces a humanitarian, economic and ecological crisis of staggering scope, with effects likely to last for years. Cotton crops on the verge of harvest have been flattened. The damage could exceed 500,000 bales or even more as of now. The US East Coast and Gulf Coast dockworkers began their first large-scale strike in nearly 50 years on Tuesday, halting the flow of about half the country's ocean shipping, after negotiations for a new labour contract broke down over wages.
- Oil prices rose toward \$71 per barrel last week, rising for the third session, driven by concerns over potential supply risks amid the escalating Middle East conflict. Earlier this week, Iran launched a missile attack on Israel, which has vowed to retaliate, heightening fears of possible disruptions to oil production facilities or supply routes in Iran. The region produces around a third of the world's oil supply.

Shankar 6 Guj ICS Price Trend

As expected, strong resistance is presently seen around 17,000 levels. As mentioned earlier, indicators are showing overbought conditions warning a possible pullback lower in the coming sessions. Good support is expected in the 16200-300 range and an eventual rise to 17,500 on the cards. Only an unexpected fall below 15,500 levels could cause some doubts on this bullish view.

MCX Cotton Candy Nov: It needs to climb above a sensitive resistance line at -60,000 to turn more bullish for reaching the actual target area near 61,500 again. While holding above 57,000,

the chances for a rise past that resistance at 60,000 looks likely. Any unexpected fall below 57,000 may hint at the possibility of weakening a bit towards the next important support line at 55,450. Poor volumes in MCX indicate no clear confidence in the price discovery process.

ICE Dec 24 Cotton Futures

As mentioned in the earlier update, prices are likely to test further upside at 75-76c in the coming weeks. Only, a close above 75.50c will be a strong bullish reversal sign, hinting at a possible reversal. But, very strong resistance is expected in the 75-76c zone. Lots of farmer/growers selling expected in the resistance zone. Only an unexpected dip below 68c would warn about the possibility of weakening further to 62 or even lower to 58c which is not our favoured view. If the

tensions in Middle East escalates, the next point of attraction would be 84c.

As mentioned before, using ICE futures and Options for mitigating prices risk especially when prices are at elevated levels helps cushion the fall and manage high priced inventory of cotton and yarn is ideal for the industry, but to take that leap of faith is a humungous task for this industry where raw material price moves make or break the profit margins.

Hedging high priced inventories in a falling market could help offset some losses from the recent fall in cotton prices. A good opportunity to protect the inventory value of purchases, is now to Buy PUT options (Out of the money) around peaks at 75c in ICE futures. This will help in mitigating any expectations of further declines. However, if the market does rise, it is only the premium for PUT's that has to be borne which is very meagre.

A container of yarn roughly uses 150 bales of raw material cotton. That much of raw material price risk is what one is exposed to till the yarn is sold. The OPTION Is ICE futures, USA helps in inventory management. MCX Candy contracts recently launched should be a good testing ground for mills and exporters desirous of hedging their price risk in ICE futures and options.

Conclusion:

As cautioned previously, prices could find strong resistance in the 60,000 levels again and fizzle out. But, a consolidation is seen now and the next move could be on the upside if international prices support. The onset of arrivals seasons will be supported by higher MSP. Strong resistance is presently noticed in the 60,000 zone per candy levels presently and may find it tough to cross that in the near-term. Any bright spots appearing on the back of cut in interest rates, weather concerns, change in global geo-politics situation and global macroeconomic sentiment are not likely to last long due to growth worries.

Important support in ICE is at \$70-71c range followed by \$68c on the downside. Prices could find a lot of buying interest again at the lower end. We expect prices to break 75c with a chance of even extending to 78-80c on the upside. The international price still indicates that a bearish H&S pattern has materialized. Also, the on-call sales in December month continues to fuel expectations of a sharp

COTTON STATISTICS & NEWS

fall post July that could see mills holding high priced and unhedged inventories.

For Shankar 6 Guj ICS supports are seen at 57,000 per candy and for ICE Jul cotton futures at \$70-71c now. The domestic technical picture looks neutral to bearish, but any downside from here could find buying support. Therefore, we can expect international prices to grind higher with chances of pullbacks and retracements lower attracting mill fixation buying and fund short-covering from time to time, but broader picture still warns of a more downside once this retracement higher ends in the 75-77c zone.

(The views expressed in this column are of the author and not that of Cotton Association of India)

USDINR Monthly Report: October 2024

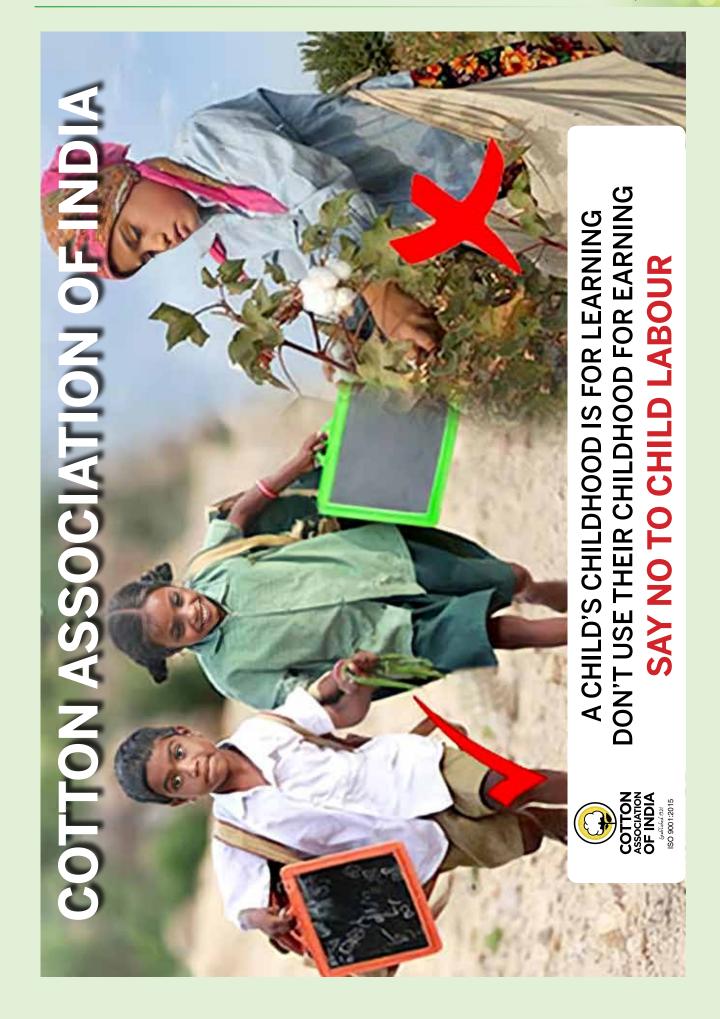
Shri. Anil Kumar Bhansali, Head of Treasury, Finrex Treasury Advisors LLP, has a rich experience of Banking and Foreign Exchange for the past 36 years. He was a Chief Dealer with an associate bank of SBI

USDINR is expected to trade in wide range of 83.40-84.40 in October. Positive sentiments in the global potential inflows from the FII's, appreciation in the emerging market currencies due to cut by the Fed and

drop in crude oil prices despite ongoing Middleeast tensions may help Rupee. The US Dollar has been finding support at 100 to the dollar index and probability of Yuan's depreciation after witnessing a drop below 7.0 last month may limit downside in USDINR. Moreover, RBI's action needs to be watched carefully as it protects the upside and downside to prevent excessive volatility. Key support lies is at 83.60 below which doors will be open for 83.45/83.40. If the RBI permits above Re to fall below 84.0 we may see USDINR moving towards 84.20-84.40 levels.

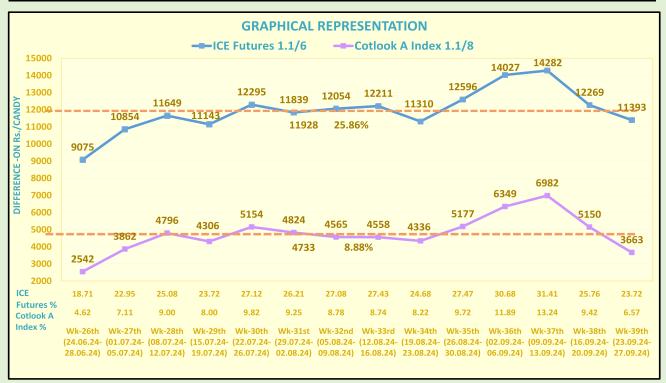
Key Triggers:

- ♦ **RBI Policy:** RBI to hold repo rate at 6.50% during its policy meeting on 7-9th October. It is expected to cut by 50 bps over the next six months, but they will likely to wait until December as they watch the inflation figures which remain within RBI comfort zone of 2-6%. RBI may not follow the Fed's lead because the Indian economy is performing well. Also, the current fall in CPI inflation is due to base effect of last year.
- ♦ **Domestic Market:** Indian benchmark indices scaled to record high levels after the massive rate cut by the Fed and positive growth outlook



Head of Treasury, Finrex Treasury Advisors LLP

of Indian economy. However, Nifty monthly RSI trading over 80 signals an overbought zone, and we may see some pullback though the long-term outlook still remains positive.


- ♦ FX Reserves: FX reserves reached a new record high of \$692.30 bn as the RBI continues to absorb all dollar inflows to build a strong umbrella, to protect rupee from market which are at record high, Shri. Anil Kumar Bhansali further depreciation against the dollar. Reserves have almost reached a target of \$700+ bn.
 - ♦ **Brent Oil:** Market seems to be cautious due to the widening conflict in the Middle East, but many analyst believes China needs more stimulus to shore up its economy and have lowered the oil demand forecasts for 2025 which will limit the uptrend in their prices.
 - ♦ FII: September has emerged the best month for foreign flows in 2024. FIIs were the consistent buyers and bought around \$11.162 bn the highest since December 2023 as they remain optimistic about India's growth. But with stimulus measures announced by the Chinese government which has led to a surge in the China stock markets by over 25%, causing FIIs to withdraw partly from Indian equity markets which are overvalued amongst major equity markets of the world.
 - Chinese Yuan: China's yuan hit its strongest level in over 16 months after the government authorities announced massive stimulus measures. They also bought around \$28.52 bn of the country's Govt bonds. But weak growth and low inflation may put some pressure on Yuan as any further appreciation will also weigh on the export-sector.

(The views expressed in this column are of the author and not that of Cotton Association of India)

Basis Comparison of ICS 105 with ICE Futures and Cotlook A Index -30th September 2024

	SEASON 2023-2024														
Comparison I	M/M(P) ICS-10						Trash 3.5	%, Str.,	/GPT 2	28				
			with IC	E Futures & Co			(Cotlook A							
Date 2024	1 US \$ = Rs.	CAI Rates	Indian Ctn	Futures 1.1/6	Differe		%	Index M-	Differen Cotlook		%				
Date 2024	KS.	Rs./c.	in USc/Ib.	Dec.'24		•	70	1.1/8			70				
	-	С	-	USc/lb. E	USc/lb.	Rs./c			USc/lb.	Rs./c					
Α	В	L	D			G	Н	I	J	K	L				
22.6	Week No-39 th 23 Sep 83,47 59800 91,38 73,44 17,94 11740 24,43 85,05 6.33 4142 7,44														
23 Sep															
24 Sep	83.55	59600	90.99	74.09	16.90	11070	22.81	85.05 85.80	5.94	3891	6.98 5.84				
25 Sep 26 Sep	83.57 83.70	59500 59200	90.81	73.20 73.02	17.61 17.20	11538 11287	24.06	84.90	5.01	3282 3491	6.27				
27 Sep	83.62	59000	90.22	72.72	17.28	11328	23.76	84.65	5.35	3507	6.32				
Weekly Avg.	83.58	59420	90.68	73.29	17.39	11328	23.72	85.09	5.59	3663	6.57				
WEERIN AVE. 03.30 33420 30.00 73.23 17.33 11333 23.72 83.03 5.39 3003 6.37															
Wk-26 th (24.06.24-28.06.24)	83.47	57640	88.08	74.21	13.87	9075	18.71	84.20	3.88	2542	4.62				
Wk-27 th (01.07.24-05.07.24)	83.49	58180	88.88	72.30	16.58	10854	22.95	82.98	5.90	3862	7.11				
Wk-28 th (08.07.24-12.07.24)	83.53	58100	88.72	70.93	17.79	11649	25.08	81.40	7.32	4796	9.00				
Wk-29 th (15.07.24-19.07.24)	83.6	58140	88.70	71.70	17.00	11143	23.72	82.13	6.57	4306	8.00				
Wk-30 th (22.07.24-26.07.24)	83.71	57660	87.86	69.13	18.73	12295	27.12	80.01	7.85	5154	9.82				
Wk-31 st (29.07.24-02.08.24)	83.74	57020	86.85	68.82	18.03	11839	26.21	79.50	7.35	4824	9.25				
Wk-32 nd (05.08.24-09.08.24)	83.92	56580	86.00	67.68	18.32	12054	27.08	79.06	6.94	4565	8.78				
Wk-33 rd (12.08.24-16.08.24)	83.93	56760	86.26	67.70	18.56	12211	27.43	79.33	6.93	4558	8.74				
Wk-34 th (19.08.24-23.08.24)	83.87	57160	86.93	69.72	17.20	11310	24.68	80.33	6.59	4336	8.22				
Wk-35 th (26.08.24-30.08.24)	83.88	58460	88.89	69.74	19.15	12596	27.47	81.02	7.87	5177	9.72				
Wk-36 th (02.09.24-06.09.24)	83.94	59780	90.84	69.52	21.31	14027	30.68	81.19	9.65	6349	11.89				
Wk-37 th (09.09.24-13.09.24)	83.97	59800	90.83	69.14	21.69	14282	31.41	80.23	10.61	6982	13.24				
Wk-38 th (16.09.24-20.09.24)	83.77	59920	91.24	72.56	18.68	12269	25.76	83.40	7.84	5150	9.42				
Wk-39 th (23.09.24-27.09.24)	83.58	59420	90.68	73.29	17.39	11393	23.72	85.09	5.59	3663	6.57				
Total Avg.	83.74	58187	88.63	70.46	18.17	11928	25.86	81.42	7.21	4733	8.88				

Note- Weeks taken as per calendar year.

(₹\Quintal)			M/M(P) K/TN	ICS-107 ICS-107	Fine Fine	35 mm 35 mm	2.8-3.7 2.8-3.7	4% 3.5% 35 35	67 25027	67 25027		67 25027	67 25027		67 25027	67 25027	67 25027	67 25027	67 25027		24 25111		80 25167		80 25167		48 27136	55 27698	95 27839	95 27839	95 27839		95 27839	95 27839	67 25027	2010
(₹/Q			K/TN M/	ICS-107 ICS	Fine F	34 mm 35		3.5% 4 34	24043 24267	24043 24267	24043 24267	24043 24267	24043 24267	Y	24043 24267	24183 24267	24183 24267	24183 24267	24183 24267	Y	24267 24324		24324 24380	24324 24380			26011 26348	26433 26855	26573 26995	26573 26995	26573 26995	Y	26573 26995	26573 26995	24043 24267	74662 25087
			M/M(P)	ICS-107	Fine	34 mm	2.8-3.7	4% 33	23705 2	23705 2		23705 2	23705 2		23705 2	23705 2	23705 2	23705 2	23705 2		23761 2				23818 2		25505 2	25870 2	26011 2	26011 2	26011 2		26011 2	26011 2	23705 2	7027
			SA/ TL/K/ TN/O		Fine	32 mm	6.3	3% 31	N.A.	N.A.	N.A.	N.A.	N.A.		N.A.	N.A.	N.A.	N.A.	N.A.		N.A.		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.		N.A.			- 1
			SA/ TL/K/ TN/O		Fine	31 mm	6.3	30	N.A.	N.A.	N.A.	N.A.	N.A.	A	N.A.	N.A.	N.A.	N.A.	N.A.	A	N.A.	А	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	Α	N.A.	٠	•	
			/ M/M(P)	5 ICS-105	Fine	31 mm	3.7-4.5	3%	N.A.			N.A.	N.A.		N.A.		N.A.	N.A.	N.A.		N.A.							N.A.	N.A.	N.A.	N.A.		N.A.	٠	•	
			SA/TL/ K/O	5 ICS-105	Fine	n 30 mm	5 3.7-4.5	3%	3 16984	3 17069		5 17181	5 17181		7 17153	17097	17097	3 17069	3 17069		9 17125		7 17153				3 17069	5 17013	3 16984	16900	3 16844		3 16844	5 17181	3 16844	17061
			M/M(P))5 ICS-105	Fine	n 30 mm	5 3.7-4.5	3%	7 16928	9 17013	4 17013	2 17125	2 17125		4 17097	6 17041	4 17041	6 17013	6 17013		2 17069		0 17097				6 17013	9 16956	1 16928	7 16844	1 16788		1 16788	0 17125	1 16788	17005
			auj)5 ICS-105	Fine	n 29 mm	5 3.7-4.5	3%	1 16647	4 16759	8 16844	4 16872	4 16872	Ω	6 16844	0 16816	0 16844	2 16816	2 16816	Ω	8 16872	Ω	6 16900		6 16872		0 16816	4 16759	6 16731	1 16647	5 16591	О	5 16591	4 16900	5 16591	16700
			P) SA/ TL/K	05 ICS-105	e Fine	m 29 mm	.5 3.7-4.5	% 3%	7 16731	9 16844		0 16984	0 16984		2 16956	6 16900	6 16900	8 16872	8 16872		4 16928		2 16956	6 16900	2 16956		6 16900	9 16844	1 16816	7 16731	1 16675		1 16675	16900 16984	1 16675	04001 00401
TES) M/M(P)	.05 ICS-105	e Fine	m 29 mm		% 3.5%	16647		16844	۱. 16900	۱. 16900		A. 16872		ı. 16816	۱. 16788	16788		ı. 16844		۸. 16872	ı. 16816	s. 16872		ı. 16816	۸. 16759	v. 16731	v. 16647	۸. 16591		۸. 16591	1690	16591	4600
TRA	024	р	J R(L)	105 ICS-105	e Fine	ım 29 mm	.,	6 3.5% 7 28	56 N.A.			91 N.A.	91 N.A.		53 N.A.		53 N.A.	35 N.A.	35 N.A.		91 N.A.		19 N.A.				35 N.A.		50 N.A.		10 N.A.		10 N.A.	- 61	01	7
SPO	September 2024	2023-24 Crop	/ K GUJ		3 2 8	% 3% 7 27	10 16366			91 16591	91 16591	Ι	63 16563	06 16535	06 16563	78 16535	78 16535	Ι	35 16591	Ι	63 16619	06 16563	63 16591		06 16535	50 16478	22 16450	38 16366	81 16310	Ι	81 16310	91 16619	81 16310	170 170		
JTRY	eptem	2023-7	M/M(P) SA/ TL/K	ICS-105 ICS-105	Fine Fine	28 mm 28 mm		3.5% 3.5% 27 27	53 16310	16394 16450	16478 16535	35 16591	35 16591		16506 16563	16450 16506	16450 16506	22 16478	22 16478		78 16535		16506 16563	16450 16506	16506 16563		50 16506	16394 16450	66 16422	81 16338	25 16281		25 16281	35 16591	25 16281	7777
UPCOUNTRY SPOT RATES	Š		P/H/ M// R(U)	ICS-105 ICS	Fine Fi	28 mm 28r	3.5-4.9 3.7-	4% 3.5 27 2	15438 16253	15438 163	15522 164	15607 16535	15775 16535		15775 165	15775 164	15803 164	15803 16422	15803 16422		15803 16478		15860 165	15860 164	15888 165		15832 16450	15775 163	15747 16366	15747 16281	15578 16225		15578 16225	15888 16535	15438 16225	7077 00017
UPC			M/M(P)/ P/ SA/TL R(ICS-105 ICS	Fine Fi	27 mm 281	_	3.5% 4 26 2	5832 154	15944 154	15944 155	16028 156	16028 157	ب	5860 157	15803 157	15803 158	15747 158	15747 158	Г	15803 158	Γ	15860 158		5860 158		15860 158	15803 157	15747 157	15663 157	15607 155	Г	15607 155	16028 158	15607 154	15001
			M/M(P)/ M/J SA/ SA TL/G SA		Fine F	27 mm 27	3.0-3.4 3.5	4% 3. 25 25	14763 15	14932 15	14988 15	15044 16	15044 16		14904 15	14904 15	14904 15	15044 15	14988 15		15044 15		15100 15	15044 15	15044 15	_	15044 15	14875 15	14763 15	14622 15	14566 15		14566 15	15100 16		
			P/H/ M/ R(U) 5	ICS-105 IC	Fine F	27 mm 27	3.5-4.9 3.0	4% 4	15100 14	15100 14	15185 14	15269 15	15438 15		15438 14	15438 14	15466 14	15466 15	15466 14		15522 15		15578 15	15578 15	15578 15		15522 15	15522 14	15466 14	15466 14	15297 14		15297 14	15578 15	15100 14566	710110 11016
			M/M(P)/ 1 SA/TL	ICS-105 IC	Fine	26 mm 2	3.0-3.4 3	4%	N.A. 1			N.A. 1	N.A. 1		N.A. 1		N.A. 1	N.A. 1	N.A. 1		N.A. 1		N.A. 1				N.A. 1		N.A. 1	- 1		7				
			P/H/ R(U) SG)	2	Fine	27 mm /2	3.54.9	4.5%	14960	14960	15044	15129	15297	0	15297	15297	15325	15325	15325	0	15382	0	15410	15410	15410		15353	15353	15297	15297	15129	0	15129	15410	14960	15064
			M/M(P)	ICS-104	Fine	23 mm	4.5-7.0	4%	15269 1	15269 1	15269 1	15269 1	15269 1		15100 1	14932 1	14763 1	14763 1	14707 1		14735 1		14763 1 14735 1	14763 1		14707 1	14650 1	14594 1	14538 1	14482 1		14482 1	15269 1	14482 1	1 10/0/1	
			KAR	ICS-103	Fine	22 mm	4.5-6.0	6%	12823	12823	12823	12823	12823		12654	12513	12513	12513	12485		12485		12513	12485	12513		12457	12401	12345	12288	12232		12232	12823	12232	10526
			cnl	ICS-102	Fine	22 mm	4.0-6.0	13%	11895	12035	12204	12260	12317		12260	12232	12204	12204	12176		12176		12232		12204		12148	12092	12007	11951	11895		11895	12317	11895	10120
			P/H/R (SG)	ICS-201	Fine	Below 22 mm	5.0-7.0	4.5%	13976	13976	14116	13835	13751	Η	13751	13723	13807	13807	13779	Н	13779	Η	13835	13835	13835		13976	13723	13723	13723	13469	Н	13976	14116	13469	10000
			P/H/R	ICS-101	Fine	Below 22 mm	5.0-7.0	4%	13807	13807	13947	13666	13582		13582	13554	13638	13638	13610		13610		13666	13666	13666		13807	13554	13554	13554	13301		13807	13947	13301	10650
			Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash Strength/GPT	2	3	4	52	9	7	6	10	11	12	13	14	16	17	18	19	20	21	23	24	25	26	27	28	30	Н	П	٧

8 • 1st October, 2024 COTTON STATISTICS & NEWS

					UPCOU	NTRY SPO	OT RAT	ES				(R	s./Qtl
Sta	ndard Descripti						based	Sp	ot Rate			23-24 Cr	op
	on Uppe		ean Lei	ngth As	per CAI B	•				Septem	ber 2024	1	
Sr. No	o. Growth	Grade Standard	Grade	Staple	Micronaire	Gravimetric Trash	Strength /GPT	23rd	24th	25th	26th	27th	28th
1	P/H/R	ICS-101	Fine	Below 22mm	5.0 - 7.0	4%	15	13807 (49100)	13554 (48200)	13554 (48200)	13554 (48200)	13301 (47300)	
2	P/H/R (SG)	ICS-201	Fine	Below 22mm	5.0 - 7.0	4.5%	15	13976 (49700)	13723 (48800)	13723 (48800)	13723 (48800)	13469 (47900)	
3	GUJ	ICS-102	Fine	22mm	4.0 - 6.0	13%	20	12148 (43200)	12092 (43000)	12007 (42700)	11951 (42500)	11895 (42300)	ŀ
4	KAR	ICS-103	Fine	22mm	4.5 - 6.0	6%	21	12457 (44300)	12401 (44100)	12345 (43900)	12288 (43700)	12232 (43500)	
5	M/M (P)	ICS-104	Fine	23mm	4.5 - 7.0	4%	22	14707 (52300)	14650 (52100)	14594 (51900)	14538 (51700)	14482 (51500)	
6	P/H/R (U) (SG)	ICS-202	Fine	27mm	3.5 - 4.9	4.5%	26	15353 (54600)	15353 (54600)	15297 (54400)	15297 (54400)	15129 (53800)	
7	M/M(P)/ SA/TL	ICS-105	Fine	26mm	3.0 - 3.4	4%	25	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	(
8	P/H/R(U)	ICS-105	Fine	27mm	3.5 - 4.9	4%	26	15522 (55200)	15522 (55200)	15466 (55000)	15466 (55000)	15297 (54400)	
9	M/M(P)/ SA/TL/G	ICS-105	Fine	27mm	3.0 - 3.4	4%	25	15044 (53500)	14875 (52900)	14763 (52500)	14622 (52000)	14566 (51800)	
10	M/M(P)/ SA/TL	ICS-105	Fine	27mm	3.5 - 4.9	3.5%	26	15860 (56400)	15803 (56200)	15747 (56000)	15663 (55700)	15607 (55500)]
11	P/H/R(U)	ICS-105	Fine	28mm	3.5 - 4.9	4%	27	15832 (56300)	15775 (56100)	15747 (56000)	15747 (56000)	15578 (55400)	
12	M/M(P)	ICS-105	Fine	28mm	3.7 - 4.5	3.5%	27	16450 (58500)	16394 (58300)	16366 (58200)	16281 (57900)	16225 (57700)	
13	SA/TL/K	ICS-105	Fine	28mm	3.7 - 4.5	3.5%	27	16506 (58700)	16450 (58500)	16422 (58400)	16338 (58100)	16281 (57900)	
14	GUJ	ICS-105	Fine	28mm	3.7 - 4.5	3%	27	16535 (58800)	16478 (58600)	16450 (58500)	16366 (58200)	16310 (58000)	
15	R(L)	ICS-105	Fine	29mm	3.7 - 4.5	3.5%	28	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	
16	M/M(P)	ICS-105	Fine	29mm	3.7 - 4.5	3.5%	28	16816	16759	16731	16647 (59200)	16591	
17	SA/TL/K	ICS-105	Fine	29mm	3.7 - 4.5	3%	28	16900 (60100)	16844 (59900)	16816 (59800)	16731 (59500)	16675 (59300)	I
18	GUJ	ICS-105	Fine	29mm	3.7 - 4.5	3%	28	16816 (59800)	16759 (59600)	16731 (59500)	16647 (59200)	16591 (59000)	
19	M/M(P)	ICS-105	Fine	30mm	3.7 - 4.5	3%	29	17013 (60500)	16956 (60300)	16928 (60200)	16844 (59900)	16788 (59700)	
20	SA/TL/K/O	ICS-105	Fine	30mm	3.7 - 4.5	3%	29	17069 (60700)	17013 (60500)	16984 (60400)	16900 (60100)	16844 (59900)	
21	M/M(P)	ICS-105	Fine	31mm	3.7 - 4.5	3%	30	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	A
22	SA/TL/ K / TN/O	ICS-105	Fine	31mm	3.7 - 4.5	3%	30	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	
23	SA/TL/K/ TN/O	ICS-106	Fine	32mm	3.5 - 4.2	3%	31	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	N.A. (N.A.)	
24	M/M(P)	ICS-107	Fine	34mm	2.8 - 3.7	4%	33	25505 (90700)	25870 (92000)	26011 (92500)	26011 (92500)	26011 (92500)	,
25	K/TN	ICS-107	Fine	34mm	2.8 - 3.7	3.5%	34	26011 (92500)	26433 (94000)	26573 (94500)	26573 (94500)	26573 (94500)	
26	M/M(P)	ICS-107	Fine	35mm	2.8 - 3.7	4%	35	26348 (93700)	26855 (95500)	26995 (96000)	26995 (96000)	26995 (96000)	
27	K/TN	ICS-107	Fine	35mm	2.8 - 3.7	3.5%	35	27136 (96500)	27698 (98500)	27839 (99000)	27839 (99000)	27839 (99000)	

(Note: Figures in bracket indicate prices in Rs./Candy)